Phospholipid and enzyme arrangements of rat liver rough microsomal subfractions from control and methylcholanthrene-treated animals. 1982

C Valtersson, and U Brunk, and G Dallner

Rough microsomes from rat liver of both control and methylcholanthrene-treated animals were subfractionated on a discontinuous sucrose gradient into three fractions according the their sedimentation velocity. The slowly sedimenting vesicles were enriched in electron transport enzymes, while those in the pellet showed higher phosphatase and ATPase activities. Methylcholanthrene treatment introduced typical changes in enzyme composition, mainly an increase of the cytochrome P-448. The individual phospholipids exhibited an identical distribution pattern in the three subfractions and no change occurred after induction with methylcholanthrene treatment. Nearest neighbour analysis of phosphatidylethanolamine with dinitrodifluorobenzene revealed a similar pattern in the enzymatically different subfraction, that is, no cross-linking with phosphatidylserine occurred. One-third of the phosphatidylethanolamine was in monomer and dimer form and about two-thirds was protein linked. When membrane and enzyme synthesis was induced, cross-linking to proteins were substantially decreased. The experiments indicate that the phospholipids are distributed in a homogenous fashion in the lateral plane of the rough microsomal membrane and do not support the possibility that phosphatidylethanolamine is specifically associated with cytochrome P-450.

UI MeSH Term Description Entries
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004139 Dinitrofluorobenzene Irritants and reagents for labeling terminal amino acid groups. DNFB,Fluorodinitrobenzene,1-Fluoro-2,4-dinitrobenzene,1 Fluoro 2,4 dinitrobenzene
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron

Related Publications

C Valtersson, and U Brunk, and G Dallner
August 1986, The Biochemical journal,
C Valtersson, and U Brunk, and G Dallner
March 1977, The Journal of cell biology,
C Valtersson, and U Brunk, and G Dallner
November 1975, Molecular pharmacology,
C Valtersson, and U Brunk, and G Dallner
November 1970, Biochimica et biophysica acta,
C Valtersson, and U Brunk, and G Dallner
September 1971, Biochemical pharmacology,
C Valtersson, and U Brunk, and G Dallner
May 1981, Toxicological European research. Recherche europeenne en toxicologie,
C Valtersson, and U Brunk, and G Dallner
January 1991, Journal of immunoassay,
Copied contents to your clipboard!