Oxygen dependence of human alveolar macrophage-mediated antibody-dependent cytotoxicity. 1982

P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone

We studied the metabolic characteristics of the human alveolar macrophage-mediated antibody-dependent cytotoxicity (ADCC) reaction, using an anti-D sensitized human erythrocyte target system. Metabolic experiments demonstrated a high resting rate of glucose metabolism in macrophages, but no oxidative metabolic burst was found to accompany the ADCC reaction. These findings were confirmed by oxygen consumption studies, showing a high resting rate of oxygen consumption by macrophages, but no change in the rate of oxygen consumption upon the addition of antibody-sensitized target cells. An anaerobic mechanism for ADCC was anticipated and investigated. Surprisingly, the macrophage-mediated ADCC reaction was found to be highly oxygen dependent. The macrophages of one chronic granulomatous disease patient were also studied and found to have a very low rate of oxidative metabolism in response to phagocytic stimuli. With oxygen present, these macrophages failed to produce significant ADCC, suggesting again that some oxidative mechanism was necessary in the macrophage-mediated ADCC reaction. Various oxygen radical scavengers were also studied. Glutathione inhibited ADCC significantly, and benzoic acid inhibited ADCC only slightly. All other scavengers had no significant inhibitory effect. Then, a known antioxidant and inhibitor of mixed-function oxidases, diethyldithiocarbamate, was found to produce a significant inhibition of the ADCC reaction. We believe this compound may be scavenging or inhibiting the production of some oxygen-dependent species important in the ADCC reaction.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D004050 Ditiocarb A chelating agent that has been used to mobilize toxic metals from the tissues of humans and experimental animals. It is the main metabolite of DISULFIRAM. Diethyldithiocarbamate,Diethylcarbamodithioic Acid,Diethyldithiocarbamic Acid,Dithiocarb,Ditiocarb Sodium,Ditiocarb, Ammonium Salt,Ditiocarb, Bismuth Salt,Ditiocarb, Lead Salt,Ditiocarb, Potassium Salt,Ditiocarb, Sodium Salt,Ditiocarb, Sodium Salt, Trihydrate,Ditiocarb, Tin(4+) Salt,Ditiocarb, Zinc Salt,Imuthiol,Sodium Diethyldithiocarbamate,Thiocarb,Zinc Diethyldithiocarbamate,Ammonium Salt Ditiocarb,Bismuth Salt Ditiocarb,Diethyldithiocarbamate, Sodium,Diethyldithiocarbamate, Zinc,Lead Salt Ditiocarb,Potassium Salt Ditiocarb,Sodium Salt Ditiocarb,Sodium, Ditiocarb,Zinc Salt Ditiocarb
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006105 Granulomatous Disease, Chronic A defect of leukocyte function in which phagocytic cells ingest but fail to digest bacteria, resulting in recurring bacterial infections with granuloma formation. When chronic granulomatous disease is caused by mutations in the CYBB gene, the condition is inherited in an X-linked recessive pattern. When chronic granulomatous disease is caused by CYBA, NCF1, NCF2, or NCF4 gene mutations, the condition is inherited in an autosomal recessive pattern. Autosomal Recessive Chronic Granulomatous Disease,Chronic Granulomatous Disease,Chronic Granulomatous Disease, Atypical,Chronic Granulomatous Disease, X-Linked,Cytochrome B-Negative Granulomatous Disease, Chronic, X-Linked,Cytochrome B-Positive Granulomatous Disease, Chronic, X-Linked,Granulomatous Disease, Chronic, X-Linked,Granulomatous Disease, Chronic, X-Linked, Variant,X-Linked Chronic Granulomatous Disease,Chronic Granulomatous Disease, X Linked,Chronic Granulomatous Diseases,Granulomatous Diseases, Chronic,X Linked Chronic Granulomatous Disease
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
December 1979, The American review of respiratory disease,
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
May 1990, Journal of immunology (Baltimore, Md. : 1950),
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
August 1986, Journal of medical microbiology,
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
January 1982, Advances in experimental medicine and biology,
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
January 1986, Journal of immunological methods,
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
March 1977, Journal of immunology (Baltimore, Md. : 1950),
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
January 1988, Cancer letters,
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
December 1982, Blood,
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
June 1983, Journal of the Reticuloendothelial Society,
P Conkling, and G Papermaster-Bender, and M Whitcomb, and A L Sagone
March 1989, Cellular immunology,
Copied contents to your clipboard!