Factors contributing to the poor myelination in the brain of the Snell dwarf mouse. 1982

T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada

Conventional histological examination of the pituitary does not distinguish Snell dwarf mutants (dw/dw) from their normal littermates (+/?) in the neonatal stage. However, immunohistochemical examination of pituitaries of litters born to heterozygous Snell parents revealed that in approximately 25% of the glands examined, the number of positive cells was very low in the neonatal stage. We attempted to delineate the events resulting in the poor myelination in the brain of the Snell dwarf mouse, and to devise an immunohistochemical method for identifying the mutant neonate. Differences in the brain weights of the dw/dw and +/? mice first became apparent on the 10th day of age, and from this time on no further increase in the weight of the dwarf mouse brain was recorded. Increase in CNPase activity was found to be suppressed in the cerebrum and brain stem throughout the developmental stage, but not in the other parts of the brain. The yield of isolated myelin decreased by 58% in the mutant mouse, but CNPase activity was equivalent to that of control myelin. Differences in DNA content per cerebrum from the dw/dw and +/? mice first became apparent on the 10th day of age. Henceforth, the dw/dw mice showed no further increase, although the +/? mice continued to increase. [3H]Thymidine incorporation into the DNA fraction in vivo on the 7th day of age, when glial cell proliferation in the cerebrum is most active, was suppressed to about 50% of the control level in all parts of the dwarf brain. These findings indicate that the poor myelination found in the mutant cerebrum is a hypomyelination due to reduce oligodendroglial proliferation caused by lack of circulating growth hormone.

UI MeSH Term Description Entries
D008297 Male Males
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin

Related Publications

T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
October 1983, British journal of experimental pathology,
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
March 1954, Bollettino della Societa italiana di biologia sperimentale,
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
January 1962, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
January 1970, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
July 1983, Biochemical and biophysical research communications,
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
June 1972, Nature: New biology,
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
July 1987, Acta endocrinologica,
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
January 1985, Journal of neuroscience research,
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
June 2004, Biochemical and biophysical research communications,
T Noguchi, and T Sugisaki, and K Takamatsu, and Y Tsukada
April 1994, European journal of orthodontics,
Copied contents to your clipboard!