Cloning and sequence analysis of a cDNA plasmid for one of the rat liver glutathione S-transferase subunits. 1982

C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy

We describe the construction and characterization of a cDNA plasmid for one of the rat liver glutathione S-transferase subunits. Poly(A)-RNA isolated from rat livers was enriched for glutathione S-transferase mRNA activity and used as templates to synthesize double stranded cDNA. The double stranded cDNAs were annealed to pBR322 through terminal deoxynucleotidyl transferase generated GC-tails followed by transformation into E. coli. Several candidate clones were selected by colony hybridization using polynucleotide kinase labeled liver and testis poly(A)-RNA probes. These candidate clones were further characterized by hybrid-selected translation of mRNA followed by immunoprecipitation and SDS gel electrophoresis. The positive clone, pGTR112 was mapped with restriction endonuclease analysis and sequenced by the chemical method of Maxam and Gilbert. The largest upen reading frame contains 142 amino acids very rich in Arg and Lys residues. The C-terminal residue phenylalanine of this open reading frame is consistent with what was reported for one of the ligandin subunits by Bhargava et al., (J. Biol. Chem. 253, 4116-4119, 1978). Among the 352 nucleotides covered by both pGTR112 and pGST94 described by Kalinyak and Taylor (J. Biol. Chem. 257, 523-530, 1982), there are only 9 nucleotide differences resulting in four changes of amino acid sequences.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
August 1986, Nucleic acids research,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
September 1985, Nucleic acids research,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
January 1986, Advances in experimental medicine and biology,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
March 1987, Xenobiotica; the fate of foreign compounds in biological systems,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
March 1993, The American journal of tropical medicine and hygiene,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
April 1995, Archives of biochemistry and biophysics,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
August 1987, Biochemical Society transactions,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
June 1991, Biochimica et biophysica acta,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
September 1987, The Journal of biological chemistry,
C P Tu, and M J Weiss, and W W Karakawa, and C C Reddy
January 1982, The Journal of biological chemistry,
Copied contents to your clipboard!