In vitro assembly of the nonglycosylated membrane protein (M) of Sendai virus. 1982

M H Heggeness, and P R Smith, and P W Choppin

The nonglycosylated membrane protein (M) of Sendai virus was purified from virions and conditions were found under which the protein assembled in vitro into three types of ordered structures: narrow tubes, wide tubes, and sheets. These structures were examined by high resolution electron microscopy by using negative staining and metal shadowing techniques. The tubes and sheets are formed from strands 7.2 nm wide that are composed of annular subunits. The wide tubes appear to be formed by the rolling of a sheet into a cylinder in which the 7.2-nm strands are inclined with a pitch of 26-33 degrees and have a left-handed orientation. In addition to the strong reflections corresponding to the 7.2-nm spacings generated by the strands, optical diffraction patterns also showed weak reflections that could be indexed on a lattice corresponding to real-space lattice constants of 7.6 nm and 5.3 nm, with an included angle of 71 degrees. The dimensions and arrangements of these structures formed in vitro are strikingly similar to those of ordered arrays of particles found by others to be associated with the inner surface of the plasma membrane of infected cells. The results support the concept that ordered arrays of M protein, similar to those assembled in vitro, are involved in the assembly of the virus particle by budding from the cell membrane and that they provide specific recognition sites for the viral nucleocapsid at the cytoplasmic surface of the plasma membrane.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D010222 Parainfluenza Virus 1, Human A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children. Hemadsorption Virus 2,Human parainfluenza virus 1,Para-Influenza Virus Type 1,Parainfluenza Virus Type 1,Para Influenza Virus Type 1
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

M H Heggeness, and P R Smith, and P W Choppin
May 1976, Virology,
M H Heggeness, and P R Smith, and P W Choppin
February 1993, Journal of virology,
M H Heggeness, and P R Smith, and P W Choppin
January 1979, Virology,
M H Heggeness, and P R Smith, and P W Choppin
November 1984, Journal of virology,
M H Heggeness, and P R Smith, and P W Choppin
January 1977, The Journal of general virology,
M H Heggeness, and P R Smith, and P W Choppin
September 1977, FEBS letters,
M H Heggeness, and P R Smith, and P W Choppin
January 1999, Journal of molecular biology,
M H Heggeness, and P R Smith, and P W Choppin
April 1983, Journal of virology,
M H Heggeness, and P R Smith, and P W Choppin
February 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!