Influence of 16 beta formylation on Na, K-ATPase inhibition by cardiac glycosides. 1982

A De Pover, and T Godfraind

The inhibitory effect of formylated cardiac steroids (gitaloxin and its derivatives) on guinea-pig heart Na, K-ATPase was compared to that of other cardiac steroids with various hydroxy substituents. The decreasing order of potency of aglycones at equilibrium was as follows: gitaloxigenin greater than digitoxigenin greater than ouabagenin greater than digoxigenin greater than gitoxigenin greater than diginatigenin. This sequence was different to the sequence of drugs hydrophobic character. The compounds with hydroxy groups in the vicinity of the lactone ring (gitoxigenin, diginatigenin) were less potent than the hydrophilic compound ouabagenin. We propose that intramolecular bounding between 16 beta-OH and the lactone ring contributes to the relatively low potency of gitoxigenin and diginatigenin. The formylation of 16 beta-OH increased the potency of gitoxigenin by a factor of 41. The formylated compound (gitaloxigenin) was 5-fold more potent than digitoxigenin. The 3 beta-glycosylation of digoxigenin lead to pseudo-irreversible inhibitors of Na, K-ATPase. The half-time to achieve the equilibrium (for 5 mumol/l) was equal to 54 s, 90 s and 108 s respectively for digoxigenin monodigitoxoside, digoxin and desacetyllanatoside C. However, at equilibrium the three glycosides were equipotent, suggesting the existence of steric effects at the sugar site of the receptor. The sequence of potency observed for monodigitoxosides, monodigitalosides and tridigitoxosides after 60 min incubation was similar to that observed for the corresponding aglycones. These results suggest that the strongly negative inductive group 16 beta-OCHO is tightly bound to Na, K-ATPase, possibly to the same receptor site than that which is thought forming hydrogen and ionic bonds with the lactone ring. They show that the high toxicity of gitaloxin in guinea-pig heart is likely due to its high potency as Na, K-ATPase inhibitor.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D004071 Digitalis Glycosides Glycosides from plants of the genus DIGITALIS. Some of these are useful as cardiotonic and anti-arrhythmia agents. Included also are semi-synthetic derivatives of the naturally occurring glycosides. The term has sometimes been used more broadly to include all CARDIAC GLYCOSIDES, but here is restricted to those related to Digitalis. Glycosides, Digitalis
D004077 Digoxin A cardiotonic glycoside obtained mainly from Digitalis lanata; it consists of three sugars and the aglycone DIGOXIGENIN. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in ATRIAL FIBRILLATION and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digacin,Digitek,Digoregen,Digoxina Boehringer,Digoxine Nativelle,Dilanacin,Hemigoxine Nativelle,Lanacordin,Lanicor,Lanoxicaps,Lanoxin,Lanoxin-PG,Lenoxin,Mapluxin,Boehringer, Digoxina,Lanoxin PG,Nativelle, Digoxine,Nativelle, Hemigoxine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A De Pover, and T Godfraind
January 1988, Methods in enzymology,
A De Pover, and T Godfraind
January 1974, Annals of the New York Academy of Sciences,
A De Pover, and T Godfraind
October 1992, Planta medica,
A De Pover, and T Godfraind
May 1985, European journal of pharmacology,
A De Pover, and T Godfraind
January 1989, Toxicon : official journal of the International Society on Toxinology,
A De Pover, and T Godfraind
August 2004, Journal of enzyme inhibition and medicinal chemistry,
Copied contents to your clipboard!