Tetanus toxin fragment forms channels in lipid vesicles at low pH. 1982

P Boquet, and E Duflot

Single-walled asolectin vesicles loaded with K+ at pH 7.00 released their K+ content upon incubation with tetanus toxin fragment B but only when the incubation was at pH below 5.00. Whole tetanus toxin exhibited only a weak releasing activity. Toxin light alpha chain and the carboxyl-terminal 48,000-dalton moiety of the heavy chain (fragment IIC) were unable to provoke K+ release from vesicles at any pH. K+ release from lipid vesicles could also be detected with tetanus toxin heavy beta chain at low pH. Furthermore, using a detergent binding assay ([3H]Triton X-100), we have also shown that an hydrophobic domain, localized in the 50,000-dalton terminal polypeptide of tetanus toxin heavy chain, is detectable at pH 3.60 but not at pH 5.00. These results lead us to conclude that the ability of tetanus toxin fragment B to release K+ from asolectin vesicles at low pH is due to the 50,000-dalton amino-terminal polypeptide of the heavy chain present in toxin fragment B. We propose that this phenomenon is caused by channel formation across the vesicle membrane as has been observed for the 23,000-dalton amino-terminal moiety of diphtheria toxin fragment B.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013744 Tetanus Toxin Protein synthesized by CLOSTRIDIUM TETANI as a single chain of ~150 kDa with 35% sequence identity to BOTULINUM TOXIN that is cleaved to a light and a heavy chain that are linked by a single disulfide bond. Tetanolysin is the hemolytic and tetanospasmin is the neurotoxic principle. The toxin causes disruption of the inhibitory mechanisms of the CNS, thus permitting uncontrolled nervous activity, leading to fatal CONVULSIONS. Clostridial Neurotoxin,Clostridium tetani Toxin,Tetanus Toxins,Neurotoxin, Clostridial,Toxin, Clostridium tetani,Toxin, Tetanus,Toxins, Tetanus

Related Publications

P Boquet, and E Duflot
April 1985, Biochemical and biophysical research communications,
P Boquet, and E Duflot
January 1984, Biophysical journal,
P Boquet, and E Duflot
March 1999, Proceedings of the National Academy of Sciences of the United States of America,
P Boquet, and E Duflot
August 1984, Biochimica et biophysica acta,
P Boquet, and E Duflot
January 1994, Molecular microbiology,
P Boquet, and E Duflot
January 1981, Proceedings of the National Academy of Sciences of the United States of America,
P Boquet, and E Duflot
January 1998, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!