Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. 1983

K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase

Limited proteolysis can be used to remove either 42 or 62 amino acids at the COOH terminus of the 18,873-dalton Escherichia coli single-stranded DNA binding protein (SSB). Since poly(dT), but not d(pT)16, increases the rate of this reaction, it appears that cooperative SSB binding to single-stranded DNA (ssDNA) is associated with a conformational change that increases the exposure of the COOH terminus to proteolysis. As a result of this DNA-induced conformational change, we presume that the COOH-terminal region of SSB will become more accessible for interacting with other proteins that utilize the SSB:ssDNA complex as a substrate and that are involved in E. coli DNA replication, repair, and recombination. Removal of this COOH-terminal domain from SSB results in a stronger helix-destabilizing protein which suggests this region may be important for controlling the ability of SSB to denature double-stranded DNA. Since similar results have previously been reported for the bacteriophage T4 gene 32 protein (Williams, K.R., and Konigsberg, W. (1978) J. Biol. Chem. 253, 2463-2470; Hosoda, J., and Moise, H. (1978) J. Biol. Chem. 253, 7547-7555), the acidic, COOH-terminal domains of these two single-stranded DNA binding proteins may be functionally homologous. Preliminary evidence is cited that suggests other prokaryotic and eukaryotic DNA binding proteins may contain similar functional domains essential for controlling their ability to invade double helical DNA.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
September 2016, The Journal of biological chemistry,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
December 1990, Microbiological reviews,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
July 1994, Journal of molecular biology,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
December 1975, Biochemistry,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
September 1978, Biochemistry,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
October 1995, European journal of biochemistry,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
January 1994, Annual review of biochemistry,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
April 1980, The Journal of biological chemistry,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
April 1995, Journal of biomolecular structure & dynamics,
K R Williams, and E K Spicer, and M B LoPresti, and R A Guggenheimer, and J W Chase
September 2010, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!