Sendai virus envelopes can mediate Epstein-Barr virus binding to and penetration into Epstein-Barr virus receptor-negative cells. 1983

R Khélifa, and J Menezes

Epstein-Barr virus (EBV) receptor-negative cells were treated with UV-inactivated Sendai virus (SV) or with reconstituted SV envelopes having a low hemolytic activity and then assayed for EBV binding or for susceptibility to EBV infection. EBV binding was assessed by using both unlabeled and fluoresceinated EBV preparations. It was found that SV or SV envelope treatment renders these cells able to bind EBV. Various experiments were performed to clarify the mechanism of this SV-induced binding. The EBV receptor-negative 1301 cells were treated with SV either at 0 degrees C or at both 0 and 37 degrees C successively and then examined for EBV binding at 0 degrees C. It was thus found that when SV treatment was performed exclusively at 0 degrees C, the target cells showed higher fluorescence intensity after their incubation with fluoresceinated EBV. In addition, Clostridium perfringens neuraminidase treatment of 1301 cells did not induce any EBV binding to these cells. These data indicate that EBV binding is not due to the disturbance of the cell membrane by SV envelope fusion or to the uncovering of EBV binding sites on the cells after the enzymatic action of SV neuraminidase. Moreover, bound EBV was partly eluted from SV-treated 1301 cells at 37 degrees C, and the treatment of EBV with C. perfringens neuraminidase inhibited its SV-mediated binding. These data indicate that EBV binds to the hemagglutinin-neuraminidase of SV on the target cell surface and that a fraction of the bound EBV becomes irreversibly associated with the SV-treated cell membrane. Our data also show that EBV can penetrate into 1301 cells which have incorporated SV envelopes into their membrane, as demonstrated by the induction of the EBV-determined nuclear antigen by B95-8 EBV in SV envelope-treated 1301 cells.

UI MeSH Term Description Entries
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D010222 Parainfluenza Virus 1, Human A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children. Hemadsorption Virus 2,Human parainfluenza virus 1,Para-Influenza Virus Type 1,Parainfluenza Virus Type 1,Para Influenza Virus Type 1
D011952 Receptors, Concanavalin A Glycoprotein moieties on the surfaces of cell membranes that bind concanavalin A selectively; the number and location of the sites depends on the type and condition of the cell. Concanavalin A Binding Sites,Concanavalin A Receptors,Concanavalin A Receptor,Receptor, Concanavalin A
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D017464 Receptors, Complement 3d Molecular sites on or in B-lymphocytes, follicular dendritic cells, lymphoid cells, and epithelial cells that recognize and combine with COMPLEMENT C3D. Human complement receptor 2 (CR2) serves as a receptor for both C3dg and the gp350/220 glycoprotein of HERPESVIRUS 4, HUMAN, and binds the monoclonal antibody OKB7, which blocks binding of both ligands to the receptor. Antigens, CD21,C3d Receptors,CD21 Antigens,CR2 Receptors,Complement 3d Receptors,Complement Receptors 2,Epstein-Barr Virus Receptors,Receptors, C3d,Receptors, CR2,CD 21 Antigens,CD21 Antigen,Complement 3d Receptor,Complement Receptor 2,Epstein-Barr Virus Receptor,Herpesvirus 4 Receptors, Human,Receptors, Epstein-Barr Virus,Antigen, CD21,Antigens, CD 21,Epstein Barr Virus Receptor,Epstein Barr Virus Receptors,Receptor 2, Complement,Receptor, Complement 3d,Receptor, Epstein-Barr Virus,Receptors 2, Complement,Receptors, Epstein Barr Virus,Virus Receptor, Epstein-Barr,Virus Receptors, Epstein-Barr

Related Publications

R Khélifa, and J Menezes
September 1980, Proceedings of the National Academy of Sciences of the United States of America,
R Khélifa, and J Menezes
January 1984, Ciba Foundation symposium,
R Khélifa, and J Menezes
November 2000, Virology,
R Khélifa, and J Menezes
July 1989, Lancet (London, England),
R Khélifa, and J Menezes
August 1989, Lancet (London, England),
Copied contents to your clipboard!