Differential recognition of "enkephalinase" and angiotensin-converting enzyme by new carboxyalkyl inhibitors. 1982

M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques

New carboxylalkyl compounds derived from Phe-Leu and corresponding to the general formula C6H5-CH2-CH(R)CO-L.Leu with R = -COOH, 3, R = -CH2-COOH, 4, R = -NH-CH2-COOH, 5, R = -NH-(CH2)2-COOH, 6, have been found to inhibit the breakdown of the Gly3-Phe4 bond of [3H] Leu-enkephalin or [3H]D.Ala2-Leu-enkephalin resulting from the action of the mouse striatal metallopeptidases: "enkephalinase" or angiotensin-converting enzyme (A.C.E.). The carboxyl coordinating ability of the Zn atom seems to be significantly higher in ACE than in "enkephalinase". Moreover, IC50 values against "enkephalinase" were found in the same range whatever the length of the chain bearing the carboxyl group whereas a well-defined position of this group with respect to the Zn atom is required for strong ACE inhibition. These features suggest a larger degree of freedom of the carboxyalkyl moieties within the active site of "enkephalinase". Therefore the differential recognition of active sites of both peptidases leads to: i) N-(carboxymethyl)-L-Phe-L-Leu, 5, a competitive inhibitor of "enkephalinase" (KI = 0.7 microM) and ACE (KI = 1.2 microM) which could be used as mixed inhibitor for both enzymes; ii) N-[(R,S)-2-carboxy, 3-benzylpropanoyl]-L-Leucine, 3, a full competitive inhibitor of "enkephalinase" (KI = 0.34 microM) which does not interact with ACE (IC50 greater than 10,000 microM). This compound can be considered as the first example of a new series of highly potent and specific "enkephalinase" inhibitors.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000806 Angiotensin-Converting Enzyme Inhibitors A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility. ACE Inhibitor,ACE Inhibitors,Angiotensin Converting Enzyme Inhibitor,Angiotensin I-Converting Enzyme Inhibitor,Angiotensin-Converting Enzyme Inhibitor,Kininase II Inhibitor,Kininase II Inhibitors,Angiotensin I-Converting Enzyme Inhibitors,Angiotensin-Converting Enzyme Antagonists,Antagonists, Angiotensin-Converting Enzyme,Antagonists, Kininase II,Inhibitors, ACE,Inhibitors, Angiotensin-Converting Enzyme,Inhibitors, Kininase II,Kininase II Antagonists,Angiotensin Converting Enzyme Antagonists,Angiotensin Converting Enzyme Inhibitors,Angiotensin I Converting Enzyme Inhibitor,Angiotensin I Converting Enzyme Inhibitors,Antagonists, Angiotensin Converting Enzyme,Enzyme Antagonists, Angiotensin-Converting,Enzyme Inhibitor, Angiotensin-Converting,Enzyme Inhibitors, Angiotensin-Converting,II Inhibitor, Kininase,Inhibitor, ACE,Inhibitor, Angiotensin-Converting Enzyme,Inhibitor, Kininase II,Inhibitors, Angiotensin Converting Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.

Related Publications

M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
January 1982, Life sciences,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
June 1988, Journal of medicinal chemistry,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
January 1985, Journal de pharmacologie,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
October 1985, Journal of medicinal chemistry,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
September 1985, Journal of medicinal chemistry,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
August 1979, European journal of pharmacology,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
January 1984, FEBS letters,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
January 2000, Terapevticheskii arkhiv,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
September 1996, British journal of cancer,
M C Fournié-Zaluski, and E Soroca-Lucas, and G Waksman, and C Llorens, and J C Schwartz, and B P Roques
April 1990, American journal of hypertension,
Copied contents to your clipboard!