Characterisation of the promoters for the ompA gene which encodes a major outer membrane protein of Escherichia coli. 1982

S T Cole, and E Bremer, and I Hindennach, and U Henning

The regulatory region of the ompA gene from Escherichia coli has been characterized by biochemical and genetic approaches. Two overlapping promoters, P1 and P2, organized in that order with respect to the ompA coding sequence, were identified and it was found that ompA possesses an unusually long leader region. Both P1 and P2 were active in an in vitro transcription system although S1 mapping analysis of the ompA mRNA made in vivo showed that P2 was mainly responsible for transcription of the gene. Confirmation of this was obtained by studying down-promoter mutants of ompA cloned in pSC101. These mutants were classified into two groups, deletions and insertions. The deletions, which were caused by the IS102 insertion element found in pSC101 removed the--35 regions of both P1 and P2. However, since P2 was distally situated with respect to the IS element it was less extensively damaged and it is proposed that the residual P2 sequence is responsible for the low level of expression observed. In addition to an IS102 insertion in the promoter region four IS1 insertion mutants were characterized. These had integrated at different positions in the ompA leader region and were all incompletely polar.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S T Cole, and E Bremer, and I Hindennach, and U Henning
July 1980, Proceedings of the National Academy of Sciences of the United States of America,
S T Cole, and E Bremer, and I Hindennach, and U Henning
December 1978, European journal of biochemistry,
S T Cole, and E Bremer, and I Hindennach, and U Henning
June 1981, FEBS letters,
S T Cole, and E Bremer, and I Hindennach, and U Henning
December 1993, The Journal of biological chemistry,
S T Cole, and E Bremer, and I Hindennach, and U Henning
January 2020, BMC research notes,
S T Cole, and E Bremer, and I Hindennach, and U Henning
September 1981, Journal of bacteriology,
S T Cole, and E Bremer, and I Hindennach, and U Henning
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
S T Cole, and E Bremer, and I Hindennach, and U Henning
December 1982, Gene,
S T Cole, and E Bremer, and I Hindennach, and U Henning
June 1990, Journal of bioenergetics and biomembranes,
S T Cole, and E Bremer, and I Hindennach, and U Henning
January 1980, The Journal of biological chemistry,
Copied contents to your clipboard!