DNA topoisomerases from rat liver: physiological variations. 1983

M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo

Besides the nicking-closing (topoisomerase I) activity, an ATP-dependent DNA topoisomerase is present in rat liver nuclei. The enzyme, partially purified, is able to catenate in vitro closed DNA circles in a magnesium-dependent, ATP-dependent, histone H1-dependent reaction, and to decatenate in vitro kinetoplast DNA networks to yield free minicircles in a magnesium-dependent and ATP-dependent reaction. It is largely similar to other eukaryotic type II topoisomerases in its requirements, and presumably belongs to this class of enzymes. Type I and type II activities were measured in rat liver nuclei as a function of regenerating time after partial hepatectomy: type I activity was not significantly changed during this process. In contrast, type II activity was considerably increased, suggesting a possible involvement of the enzyme in DNA replication.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
October 1979, FEBS letters,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
April 1986, Biochemistry,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
December 1989, Antimicrobial agents and chemotherapy,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
November 1984, Biochemical and biophysical research communications,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
October 1963, Nature,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
February 1995, Current opinion in structural biology,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
June 1990, Current opinion in cell biology,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
January 1981, Annual review of biochemistry,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
November 1980, Cell,
M Duguet, and C Lavenot, and F Harper, and G Mirambeau, and A M De Recondo
October 1998, Biochimica et biophysica acta,
Copied contents to your clipboard!