Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme. 1983

J G Bender, and L C McPhail, and D E Van Epps

NADPH oxidase activity in particulate fractions from human neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan was enhanced by prior exposure of the neutrophils to chemotactic factors. Enhanced activity was seen measuring both NADPH-dependent chemiluminescence and superoxide anion production. Enhancement was observed to be both time and dose dependent with several chemotactic stimuli, including casein, N-formyl-methionyl-leucyl-phenylalanine (f-MLP), and C5a. F-MLP and C5a showed similar patterns, with peak enhancement occurring within 2 to 15 min of preincubation and lasting up to 1 hr. In contrast, enhancement of PMA-stimulated oxidase activity by casein was more gradual and sustained, lasting up to 2 hr. Fractions from cells treated only with chemotactic factors and not stimulated with PMA showed no oxidase activity. Kinetic studies of this enhanced activity show that chemotactic factors induce increases in Vmax values but do not significantly alter Km values for the oxidase. Further experiments using agents that modulate degranulation suggest that enzyme release is not involved in this enhancement. These data suggest that pretreatment with chemotactic factors results in an increase in the amount of activated oxidase in membrane fractions obtained from PMA-stimulated neutrophils. This alteration of NADPH oxidase activity provides a subcellular basis for the enhanced bactericidal activity and increased oxidative metabolism seen in neutrophils treated with chemotactic factors.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D009239 N-Formylmethionine Effective in the initiation of protein synthesis. The initiating methionine residue enters the ribosome as N-formylmethionyl tRNA. This process occurs in Escherichia coli and other bacteria as well as in the mitochondria of eucaryotic cells. N Formylmethionine,Formylmethionine, N
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D003182 Complement C5 C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX. C5 Complement,Complement 5,Complement C5, Precursor,Complement Component 5,Precursor C5,Pro-C5,Pro-complement 5,C5, Complement,C5, Precursor,C5, Precursor Complement,Complement, C5,Component 5, Complement,Precursor Complement C5,Pro C5,Pro complement 5

Related Publications

J G Bender, and L C McPhail, and D E Van Epps
March 1981, The Journal of clinical investigation,
J G Bender, and L C McPhail, and D E Van Epps
December 1999, Journal of immunological methods,
J G Bender, and L C McPhail, and D E Van Epps
October 1986, The Journal of biological chemistry,
J G Bender, and L C McPhail, and D E Van Epps
May 1991, Journal of leukocyte biology,
J G Bender, and L C McPhail, and D E Van Epps
April 1979, The Journal of clinical investigation,
J G Bender, and L C McPhail, and D E Van Epps
May 1995, Immunopharmacology and immunotoxicology,
J G Bender, and L C McPhail, and D E Van Epps
May 1978, The Journal of clinical investigation,
J G Bender, and L C McPhail, and D E Van Epps
May 1985, The Journal of clinical investigation,
J G Bender, and L C McPhail, and D E Van Epps
September 1990, Biochimica et biophysica acta,
J G Bender, and L C McPhail, and D E Van Epps
August 1988, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!