Regulation of excitation-secretion coupling by thyrotropin-releasing hormone (TRH): evidence for TRH receptor-ion channel coupling in cultured pituitary cells. 1983

G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben

The electrophysiological and secretory properties of a well-studied clonal line of rat anterior pituitary cells (GH3) have been compared with a new line of morphologically distinct cells derived from it (XG-10). The properties of the latter cells differ from the parent cells in that they do not have receptors for thyrotropin-releasing hormone and their basal rate of secretion is substantially higher (ca. three- to fivefold). While both cell types generate Ca++ spikes, the duration of the spike in XG-10 cells (ca. 500 msec) is about 2 orders of magnitude longer than that in GH3 cells (5-10 msec). The current-voltage characteristics of the two cell types are markedly different; the conductance of GH3 cells is at least 20-fold higher than XG-10 cells when cells are depolarized to more positive potentials than the threshold for Ca++ spikes (approximately -35 mV). While treatment of GH3 cells with the secretagogues tetraethylammonium chloride or thyrotropin-releasing hormone decreases the conductance in this voltage region to approximately the same as that for XG-10 cells, the electrophysiological and secretory properties of XG-10 cells are unaffected by treatment with either of these agents. Results of this comparative study suggest that XG-10 cells lack tetraethylammonium-sensitive K+ channels. The parallel loss of thyrotropin-releasing hormone receptor binding activity and of a K+ channel in XG-10 cells implies that the thyrotropin-releasing hormone receptor may be coupled with, or be an integral part of, this channel. Apparently thyrotropin-releasing hormone, like tetraethylammonium chloride, acts by inhibiting K+ channels resulting in a prolongation of the action potential, promoting Ca++ influx and subsequently enhancing hormone secretion.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D013973 Thyrotropin-Releasing Hormone A tripeptide that stimulates the release of THYROTROPIN and PROLACTIN. It is synthesized by the neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, TRH (was called TRF) stimulates the release of TSH and PRL from the ANTERIOR PITUITARY GLAND. Protirelin,Thyroliberin,Abbott-38579,Antepan,Proterelin Tartrate,Proterelin Tartrate Hydrate,Protirelin Tartrate (1:1),Relefact TRH,Stimu-TSH,TRH Ferring,TRH Prem,Thypinone,Thyroliberin TRH Merck,Thyrotropin-Releasing Factor,Thyrotropin-Releasing Hormone Tartrate,Abbott 38579,Abbott38579,Hydrate, Proterelin Tartrate,Prem, TRH,Stimu TSH,StimuTSH,TRH, Relefact,Tartrate Hydrate, Proterelin,Thyrotropin Releasing Factor,Thyrotropin Releasing Hormone,Thyrotropin Releasing Hormone Tartrate

Related Publications

G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
August 1992, The Journal of biological chemistry,
G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
June 1993, Molecular endocrinology (Baltimore, Md.),
G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
September 1979, Experimental cell research,
G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
January 1974, Neuroendocrinology,
G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
November 1987, The Journal of clinical endocrinology and metabolism,
G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
September 1973, Endocrinology,
G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
G J Kaczorowski, and R L Vandlen, and G M Katz, and J P Reuben
December 1999, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!