Characteristics of the [3H]-yohimbine binding on rat brain alpha2-adrenoceptors. 1982

B Rouot, and M C Quennedey, and J Schwartz

The labelling of rat cerebral cortex alpha 2-adrenoceptors with [3H]-yohimbine ([3H]-YOH) was investigated. At 25 degrees C, binding equilibrium was reached in about 10 min and dissociation occurred with a half time of about 1 min. Saturation experiments gave an equilibrium KD value of 10.13 +/- 1.95 nM and a maximum number of sites of 254 +/- 22 fmol/mg protein. The [3H]-YOH binding sites exhibited alpha 2-adrenergic receptor specificity; the order of potency for the antagonists was rauwolscine greater than yohimbine much greater than prazosin greater than corynanthine. For the agonists, the order was: oxymetazoline greater than clonidine greater than (-)-adrenaline greater than (-)-noradrenaline much greater than (-)-phenylephrine. Agonists exhibited shallow curves in inhibiting [3H]-YOH binding, with pseudo-Hill coefficients (nH) of less than 1.0. These curves were shifted to lower overall affinity and steepened in the presence of 100 microM GTP. Antagonist competition curves were also shallow but GTP had no significant effect. Divalent cations at millimolar concentrations decreased the [3H]-YOH binding: IC50 values were about 6.0, 6.8 and 0.3 mM for Ca2+, Mg2+ and Mn2+ respectively. The maximal number of [3H]-YOH binding sites in the cortex was close to that labelled by the agonist [3H]-paraaminoclonidine ([3H]-PAC). The regional distribution of these sites in the brain, examined at a single concentration of [3H]-YOH and [3H]-PAC, showed a similar pattern except in the striatum. Taken together, the results indicate that like [3H]-PAC, [3H]-YOH labels alpha 2-adrenoceptors in rat brain cortex. They also show that [3H]-YOH is a useful tool for the study of the high and low affinity sites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Rouot, and M C Quennedey, and J Schwartz
March 1982, Biochemical pharmacology,
B Rouot, and M C Quennedey, and J Schwartz
April 1986, European journal of pharmacology,
B Rouot, and M C Quennedey, and J Schwartz
January 1989, Journal of affective disorders,
B Rouot, and M C Quennedey, and J Schwartz
January 1986, European journal of pharmacology,
B Rouot, and M C Quennedey, and J Schwartz
November 1977, British journal of pharmacology,
B Rouot, and M C Quennedey, and J Schwartz
May 1984, Biochemical and biophysical research communications,
B Rouot, and M C Quennedey, and J Schwartz
November 1999, British journal of pharmacology,
B Rouot, and M C Quennedey, and J Schwartz
March 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Copied contents to your clipboard!