Effects of external cesium and rubidium on outward potassium currents in squid axons. 1983

J R Clay, and M F Shlesinger

We have studied the effects of external cesium and rubidium on potassium conductance of voltage clamped squid axons over a broad range of concentrations of these ions relative to the external potassium concentration. Our primary novel finding concerning cesium is that relatively large concentrations of this ion are able to block a small, but statistically significant fraction of outward potassium current for potentials less than approximately 50 mV positive to reversal potential. This effect is relieved at more positive potentials. We have also found that external rubidium blocks outward current with a qualitatively similar voltage dependence. This effect is more readily apparent than the cesium blockade, occurring even for concentrations less than that of external potassium. Rubidium also has a blocking effect on inward current, which is relieved for potentials more than 20-40 mV negative to reversal, thereby allowing both potassium and rubidium ions to cross the membrane. We have described these results with a single-file diffusion model of ion permeation through potassium channels. The model analysis suggests that both rubidium and cesium ions exert their blocking effects at the innermost site of a two-site channel, and that rubidium competes with potassium ions for entry into the channel more effectively than does cesium under comparable conditions.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012413 Rubidium An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.
D049832 Decapodiformes A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode

Related Publications

J R Clay, and M F Shlesinger
January 1983, The Journal of membrane biology,
J R Clay, and M F Shlesinger
December 1970, The Journal of physiology,
J R Clay, and M F Shlesinger
August 1977, Biophysical journal,
J R Clay, and M F Shlesinger
February 1979, The Journal of physiology,
J R Clay, and M F Shlesinger
January 1987, European biophysics journal : EBJ,
J R Clay, and M F Shlesinger
January 1974, Annals of the New York Academy of Sciences,
J R Clay, and M F Shlesinger
August 1986, The American journal of physiology,
Copied contents to your clipboard!