The cardiac glycoside-receptor system in the human heart. 1983

E Erdmann, and L Brown

Specific binding sites have been demonstrated to exist in the heart for several drugs and hormones such as beta-blocking agents, cardiac glycosides, catecholamines, insulin, glucagon and acetylcholine. The specific binding sites for cardiac glycosides in the human heart have certain properties which make it likely that they are the pharmacological receptors for the therapeutic and toxic actions of digitalis glycosides: they are located in the cell membrane and bind cardioactive steroids reversibly with high affinity: half-maximal receptor binding occurs at approximately 2 nM (approximately 1.5 ng/ml) for digoxin; potassium decreases receptor affinity, calcium increases it; specific binding of ouabain, digoxin or digitoxin is related to inhibition of (Na+ + K+)-ATPase activity--which is supposed to be the receptor enzyme for cardiac glycosides. Human left ventricle contains approximately 1.5 x 10(14) binding sites/g wet weight, right ventricle approximately 0.9 x 10(14). In disease the number of receptors may decrease (hypothyroid states, myocardial infarction) or increase (hyperthyroidism, chronic hypokalaemia). Certain drugs (such as phenytoin) or different temperatures or pH changes cause a change in digitalis-receptor affinity. Thus, the number of receptors and possibly their properties are subject to regulation in clinically relevant situations. Further investigations will probably reveal those pathophysiological states, which allow the explanation of toxicity or digitalis refractoriness.

UI MeSH Term Description Entries
D007008 Hypokalemia Abnormally low potassium concentration in the blood. It may result from potassium loss by renal secretion or by the gastrointestinal route, as by vomiting or diarrhea. It may be manifested clinically by neuromuscular disorders ranging from weakness to paralysis, by electrocardiographic abnormalities (depression of the T wave and elevation of the U wave), by renal disease, and by gastrointestinal disorders. (Dorland, 27th ed) Hypopotassemia,Hypokalemias,Hypopotassemias
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004074 Digitoxin A cardiac glycoside sometimes used in place of DIGOXIN. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) Coramedan,Digimed,Digimerck,Digitaline Nativelle,Digitoxin AWD,Digitoxin Bürger,Digitoxin Didier,Digitoxin-Philo,Digophton,AWD, Digitoxin,Bürger, Digitoxin,Didier, Digitoxin,Digitoxin Philo,Nativelle, Digitaline
D004077 Digoxin A cardiotonic glycoside obtained mainly from Digitalis lanata; it consists of three sugars and the aglycone DIGOXIGENIN. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in ATRIAL FIBRILLATION and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digacin,Digitek,Digoregen,Digoxina Boehringer,Digoxine Nativelle,Dilanacin,Hemigoxine Nativelle,Lanacordin,Lanicor,Lanoxicaps,Lanoxin,Lanoxin-PG,Lenoxin,Mapluxin,Boehringer, Digoxina,Lanoxin PG,Nativelle, Digoxine,Nativelle, Hemigoxine

Related Publications

E Erdmann, and L Brown
April 1975, Biochemical pharmacology,
E Erdmann, and L Brown
January 1975, Recent advances in studies on cardiac structure and metabolism,
E Erdmann, and L Brown
January 1975, Proceedings of the Western Pharmacology Society,
E Erdmann, and L Brown
January 1981, Clinical cardiology,
E Erdmann, and L Brown
December 1980, Biochemical pharmacology,
E Erdmann, and L Brown
July 1972, The Journal of clinical investigation,
E Erdmann, and L Brown
January 1975, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
E Erdmann, and L Brown
January 1984, Basic research in cardiology,
Copied contents to your clipboard!