The positive inotropic effect of aconitine. 1983

P Honerjäger, and A Meissner

1. The inotropic and electrophysiological effects of aconitine were measured in the isolated, isometrically contracting guinea-pig papillary muscle during the prearrhythmic phase of alkaloid action. 2. In muscles stimulated continually at 1 Hz, 1 mumol/l aconitine produced a positive inotropic effect that reached 38 +/- (SEM) 9% immediately before the onset of arrhythmia (n = 3). 3. If aconitine (0.5 mumol/l) was applied to non-stimulated (resting) muscles for 30 min and 1-Hz stimulation resumed thereafter, the arrhythmia occurred after 724 +/- 101 beats. Prolongation of the rest exposure to 2 h did not significantly diminish the number of prearrhythmic beats. Thus, the onset of aconitine action is critically determined by muscle activity (rather than by time), and a 30-min aconitine application to the resting muscle suffices for complete equilibration of the tissue. 4. Using the preequilibration-at-rest procedure, the positive inotropic effect of aconitine (0.25 - 4 mumol) was found (a) to be absent in the rested-state contraction, (b) to grow with both number of subsequent beats and alkaloid concentration, and (c) to reach a similar prearrhythmic maximum at all concentrations. This maximum amounted to about 1/4 of the maximum positive inotropic effect of dihydroouabain. It was not influenced by reserpine pretreatment of the guinea pig. 5. Aconitine (1 mumol/l) delayed the repolarization phase of the action potential by establishing a secondary plateau at approximately -60 mV. This effect paralleled the positive inotropic effect and, like the positive inotropic effect, was abolished by 10 mumol/l tetrodotoxin (TTX). In partially depolarized muscles ([K]0 = 24 mmol/l) aconitine (8 mumol/l) produced a TTX-sensitive increase in amplitude and rate of rise of the rested-state contraction; this indicates a voltage-dependent effect on some resting Na channels. 6. While delaying the late repolarization phase, aconitine markedly shortened the early repolarization at levels positive to -40 mV, reduced the overshoot and decreased the maximum rat of depolarization of the action potential. Slow action potentials ([K]0 = 24 mmol/l; 10 mumol/l TTX) were insensitive to aconitine. 7. We conclude that the well known property of aconitine to prolong the Na influx during the action potential leads to a positive inotropic effect, thus confirming the importance of Na influx for the regulation of myocardial contractility. The exact mechanism of an additional effect by which aconitine reduces the overshoot and shortens the plateau phase of the action potential awaits further study.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000157 Aconitine A C19 norditerpenoid alkaloid (DITERPENES) from the root of ACONITUM; DELPHINIUM and larkspurs. It activates VOLTAGE-GATED SODIUM CHANNELS. It has been used to induce ARRHYTHMIAS in experimental animals and it has anti-inflammatory and anti-neuralgic properties. Acetylbenzoylaconine,Aconitane-3,8,13,14,15-pentol, 20-ethyl-1,6,16-trimethoxy-4-(methoxymethyl)-, 8-acetate 14-benzoate, (1alpha,3alpha,6alpha,14alpha,15alpha,16beta)-,Acetylbenzoyl-aconine,Acetylbenzoyl aconine

Related Publications

P Honerjäger, and A Meissner
May 1970, La Presse medicale,
P Honerjäger, and A Meissner
January 1972, Advances in cyclic nucleotide research,
P Honerjäger, and A Meissner
February 1964, Sbornik lekarsky,
P Honerjäger, and A Meissner
January 1982, Canadian Anaesthetists' Society journal,
P Honerjäger, and A Meissner
June 1974, Zeitschrift fur Kardiologie,
P Honerjäger, and A Meissner
February 1966, The Journal of pharmacology and experimental therapeutics,
P Honerjäger, and A Meissner
January 1991, Zeitschrift fur Kardiologie,
P Honerjäger, and A Meissner
February 1994, Israel journal of medical sciences,
P Honerjäger, and A Meissner
February 1966, The American journal of physiology,
Copied contents to your clipboard!