Development of haematopoietic colonies on the macrophage layer formed in the peritoneal cavity of S1/S1d mice. 1978

Y Miyano, and M Tamai, and Y Kitamura

The colony-forming ability of haematopoietic cells was examined on the macrophage layer formed in the peritoneal cavity of S1/S1d mice. The bone marrow cells of the congenic +/+ mice formed many macroscopic colonies on the macrophage layer of the S1/S1d mice although they did not form macroscopic colonies in the spleens of the same S1/S1d recipients. The size and the differentiation pattern of colonies on the macrophage layer of the S1/S1d mice were comparable to those of the colonies on the macrophage layer of the +/+ mice. There are two possible explanations for these results: (a) The microenvironmental defect of the S1/S1d mice has a more prominent effect on the development of spleen colonies than that of macrophage-layer colonies because 'Steel' locus may not be expressed significantly in the peritoneal macrophages or (b) because the cells that make colonies on the macrophage layer may be more differentiated cells than the multipotential stem cells that make colonies in the spleen.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

Y Miyano, and M Tamai, and Y Kitamura
July 1973, Transplantation,
Y Miyano, and M Tamai, and Y Kitamura
December 1973, Blood,
Y Miyano, and M Tamai, and Y Kitamura
March 1978, The American journal of pathology,
Y Miyano, and M Tamai, and Y Kitamura
April 1975, Experimental hematology,
Y Miyano, and M Tamai, and Y Kitamura
March 1979, Blood,
Y Miyano, and M Tamai, and Y Kitamura
April 1979, Journal of cellular physiology,
Y Miyano, and M Tamai, and Y Kitamura
May 1987, Cell and tissue kinetics,
Y Miyano, and M Tamai, and Y Kitamura
June 1977, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Y Miyano, and M Tamai, and Y Kitamura
June 1984, Experimental hematology,
Copied contents to your clipboard!