Cyclic 3', 5'-AMP relay in Dictyostelium discoideum: adaptation is independent of activation of adenylate cyclase. 1983

A Theibert, and P N Devreotes

In Dictyostelium discoideum, binding of cAMP to high affinity surface receptors leads to a rapid activation of adenylate cyclase followed by subsequent adaptation within several minutes. The rate of secretion of [ 3H ]cAMP, which reflects the state of activation of the enzyme, was measured. Caffeine noncompetitively inhibited the response to cAMP. Inhibition was rapidly reversible and pretreatment of cells with caffeine for up to 22 min had little effect on the subsequent responsiveness to cAMP. However, cells pretreated with caffeine plus cAMP for greater than or equal to 8 min did not respond when caffeine was removed and the same concentration of cAMP was applied. The following observations indicate that both adaptation and deadaptation to cAMP occurred to the same extent and at the same rate whether or not cAMP synthesis was inhibited. First, when cells were pretreated with 10(-9)-10(-6) M cAMP in the presence or absence of caffeine and the stimulus was switched to a saturating dose of cAMP, the response to the increment was the same whether or not the initial response was blocked. Second, cells progressively lost responsiveness to 10(-6) M cAMP as pretreatment with 10(-6) M cAMP plus caffeine was extended from 0 to 8 min with the same time course as for those pretreated with 10(-6) M cAMP alone. Third, cells which were adapted in the presence of caffeine and cAMP deadapted within the same time period as controls when cAMP was removed. These observations demonstrate that while some part of the activation process is inhibited by caffeine the adaptation process is unaffected. Our conclusion is that adaptation does not depend on the activation of adenylate cyclase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP

Related Publications

A Theibert, and P N Devreotes
June 1977, Proceedings of the National Academy of Sciences of the United States of America,
A Theibert, and P N Devreotes
October 1979, The Journal of biological chemistry,
A Theibert, and P N Devreotes
October 1980, Developmental biology,
A Theibert, and P N Devreotes
October 1976, FEBS letters,
A Theibert, and P N Devreotes
April 1977, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!