Decreased number of benzodiazepine receptors in frontal cortex of rat brain following long-term lithium treatment. 1983

O Hetmar, and M Nielsen, and C Braestrup

Chronic administration of lithium led to a decreased number of benzodiazepine receptors (ca. 20%) in frontal cortex of rat brain, whereas no change was observed in the binding characteristics in the remaining part of the cortex and in the hippocampus and the cerebellum. Long-term lithium treatment did not change the binding of [3H]lysergic acid diethylamide and [3H]quinuclidinyl benzilate to membranes of various brain regions in the rat. We concluded that the effect of lithium on the benzodiazepine receptor is brain region specific and cannot be explained as a consequence of a reduced gamma-aminobutyric acid-ergic stimulation of benzodiazepine receptor, as the change in receptor binding was due to a change in the number of receptors rather than in the affinity constant.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008238 Lysergic Acid Diethylamide Semisynthetic derivative of ergot (Claviceps purpurea). It has complex effects on serotonergic systems including antagonism at some peripheral serotonin receptors, both agonist and antagonist actions at central nervous system serotonin receptors, and possibly effects on serotonin turnover. It is a potent hallucinogen, but the mechanisms of that effect are not well understood. LSD,Lysergide,LSD-25,Lysergic Acid Diethylamide Tartrate,Acid Diethylamide, Lysergic,Diethylamide, Lysergic Acid,LSD 25
D008297 Male Males
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical

Related Publications

O Hetmar, and M Nielsen, and C Braestrup
May 1989, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
O Hetmar, and M Nielsen, and C Braestrup
January 1988, Alcohol (Fayetteville, N.Y.),
O Hetmar, and M Nielsen, and C Braestrup
January 1995, Journal of neural transmission. General section,
O Hetmar, and M Nielsen, and C Braestrup
July 1995, Annals of the New York Academy of Sciences,
O Hetmar, and M Nielsen, and C Braestrup
April 1977, Nature,
O Hetmar, and M Nielsen, and C Braestrup
May 1983, European journal of pharmacology,
O Hetmar, and M Nielsen, and C Braestrup
December 1997, Journal of neurophysiology,
O Hetmar, and M Nielsen, and C Braestrup
March 1991, The Japanese journal of psychiatry and neurology,
Copied contents to your clipboard!