Evidence for opiate receptors on pituicytes. 1983

S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen

A hypothalamo-neurohypophyseal enkephalinergic pathway has been described and the pars nervosa of the rat pituitary contains enkephalin-like material which may coexist in vasopressin and oxytocin terminals. At the level of the pars nervosa itself, stereospecific opiate receptors with properties very similar to those of brain receptors have been described, and opiates have been shown to inhibit the release of both vasopressin and oxytocin. The location of the opiate receptors involved has been presumed to be pre-terminal on the neurosecretory fibres. Using an autoradiographic technique to visualize opiate receptors, however, we now report that destruction of the neurosecretory fibres following pituitary stalk section does not result in a significant change in the neural lobe opiate receptor population. This suggests that the opiate receptors within the neural lobe may be present on pituicytes rather than on neurosecretory fibres.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
May 1980, Science (New York, N.Y.),
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
January 1987, Monographs in neural sciences,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
October 1991, Molecular and cellular neurosciences,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
September 1979, Naunyn-Schmiedeberg's archives of pharmacology,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
October 1994, The Journal of pharmacy and pharmacology,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
February 1986, Biochemical pharmacology,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
October 1981, The Journal of biological chemistry,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
March 1991, Neuroscience letters,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
April 1982, Biochemical and biophysical research communications,
S L Lightman, and M Ninkovic, and S P Hunt, and L L Iversen
March 1986, Brain research,
Copied contents to your clipboard!