Translational block to expression of the Escherichia coli Tn9-derived chloramphenicol-resistance gene in Bacillus subtilis. 1982

D S Goldfarb, and R L Rodriguez, and R H Doi

The Gram-negative product-encoding Tn9-derived chloramphenicol-resistance (Cmr) gene can be cloned but not phenotypically expressed in Bacillus subtilis. We show that, even when transcribed from B. subtilis promoters, the ribosomal binding site for the Cmr gene does not function well in B. subtilis. The Cmr gene product, chloramphenicol acetyltransferase (CmAcTase; acetyl-CoA:chloramphenicol 3-O-acetyltransferase, EC 2.3.1.28), is detected in B. subtilis when the promoters, ribosomal binding sites, and initiation codons of B. subtilis genes are fused to the Cmr gene. These gene fusions lead to the in vivo production of mRNAs containing B. subtilis translation start signals followed in an open reading frame by the translation start site normally used by Escherichia coli to initiate translation of Cmr mRNA. Both fusion and native CmAcTase proteins are produced in E. coli, but only fusion CmAcTase is produced in B. subtilis. We conclude that the absence of native CmAcTase in B. subtilis is due to inability of the E. coli ribosomal binding site to function well in B. subtilis. Since fusion CmAcTase polypeptides are produced in E. coli, we conclude that these particular B. subtilis regulatory elements function heterologously in E. coli. The absence of a suitable binding site on the Cmr gene for B. subtilis ribosomes is consistent with reports that many E. coli genes are not expressed in B. subtilis and that E. coli mRNA functions poorly in B. subtilis in vitro translation systems. The functioning of B. subtilis regulatory sequences in E. coli is consistent with in vivo and in vitro data showing the expression of B. subtilis genes in E. coli. To confirm the hypothesis that the large CmAcTase proteins are NH2-terminal fusions of native CmAcTase we partially determined the sequence of one CmAcTase fusion protein.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

D S Goldfarb, and R L Rodriguez, and R H Doi
March 1987, Journal of bacteriology,
D S Goldfarb, and R L Rodriguez, and R H Doi
November 1985, Journal of bacteriology,
D S Goldfarb, and R L Rodriguez, and R H Doi
November 1986, Journal of bacteriology,
D S Goldfarb, and R L Rodriguez, and R H Doi
May 1987, Molecular & general genetics : MGG,
D S Goldfarb, and R L Rodriguez, and R H Doi
July 1987, Journal of bacteriology,
D S Goldfarb, and R L Rodriguez, and R H Doi
October 1983, Gene,
D S Goldfarb, and R L Rodriguez, and R H Doi
June 1984, Journal of bacteriology,
D S Goldfarb, and R L Rodriguez, and R H Doi
January 1983, Molecular & general genetics : MGG,
D S Goldfarb, and R L Rodriguez, and R H Doi
November 1983, Gene,
D S Goldfarb, and R L Rodriguez, and R H Doi
January 1985, The Journal of biological chemistry,
Copied contents to your clipboard!