Insulin and glucagon regulate the activation of two distinct membrane-bound cyclic AMP phosphodiesterases in hepatocytes. 1983

C M Heyworth, and A V Wallace, and M D Houslay

Glucagon (10 nM) caused a transient elevation of intracellular cyclic AMP concentrations, which reached a peak in around 5 min, and slowly returned to basal values in around 30 min. When 1 mM-3-isobutyl-1-methylxanthine (IBMX) was present, this process yielded a Ka of 1 nM for glucagon. The addition of insulin (10 nM) after 5 min exposure to glucagon (10 nM) caused intracellular cyclic AMP concentrations to fall dramatically, attaining basal values within 10 min. The regulation of this process was dose-dependent, exhibiting a Ka of 0.4 nM for insulin. If insulin and glucagon were added together to hepatocytes, then insulin decreased the magnitude of the cyclic AMP response to glucagon. IBMX (1 mM) prevented insulin antagonizing the action of glucagon in both of these instances. A gentle homogenization procedure followed by a rapid subcellular fractionation of hepatocytes on a Percoll gradient was developed. This was used to resolve subcellular membrane fractions and to identify cyclic AMP phosphodiesterase activity in both membrane and cytosol fractions. Glucagon and insulin only affected the activity of two distinct membrane-bound species, a plasma-membrane enzyme and a 'dense vesicle' enzyme. Glucagon (10 nM), insulin (10 nM), IBMX (1 mM), dibutyryl cyclic AMP (10 microM) and cholera toxin (1 microgram/ml) all elicited the activation of the 'dense vesicle' enzyme. The plasma-membrane enzyme was not activated by glucagon, IBMX or dibutyryl cyclic AMP, although insulin and cholera toxin both led to its activation. The degree of activation of the plasma-membrane enzyme produced by insulin was increased in the presence of IBMX or dibutyryl cyclic AMP. Glucagon pretreatment (5 min) of hepatocytes blocked the ability of insulin to activate the plasma-membrane enzyme. The activity state of these phosphodiesterases is discussed in relation to the observed changes in intracellular cyclic AMP concentrations. It is suggested that insulin exerts its action on the plasma-membrane phosphodiesterase through a mechanism involving a guanine nucleotide-regulatory protein.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C M Heyworth, and A V Wallace, and M D Houslay
October 1983, The Biochemical journal,
C M Heyworth, and A V Wallace, and M D Houslay
December 1978, Biochimica et biophysica acta,
C M Heyworth, and A V Wallace, and M D Houslay
January 1997, Cellular signalling,
C M Heyworth, and A V Wallace, and M D Houslay
December 1979, Analytical biochemistry,
C M Heyworth, and A V Wallace, and M D Houslay
December 1997, British journal of haematology,
C M Heyworth, and A V Wallace, and M D Houslay
January 1985, Journal of cyclic nucleotide and protein phosphorylation research,
Copied contents to your clipboard!