Low-spin ferric forms of cytochrome a3 in mixed-ligand and partially reduced cyanide-bound derivatives of cytochrome c oxidase. 1983

B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon

Optical-absorption-, e.p.r.- and m.c.d. (magnetic-circular-dichroism)-spectroscopic measurements were made on liganded derivatives of oxidized and partially reduced cytochrome c oxidase. When NO was added to oxidized cyanide-bound cytochrome c oxidase, no changes occurred in the optical-absorption difference spectrum. In contrast, NO induced reduction of cytochrome a3 and formation of the nitrosylferrohaem species when the oxidized resting enzyme was the starting material. E.p.r. spectroscopy of the NO-treated oxidized cyanide-bound enzyme revealed the presence of a low-spin haem signal at g = 3.40, whereas the g = 3.02 and g = 2.0 signals of the oxidized enzyme remained unchanged. Both haem groups in this species are e.p.r.-detectable simultaneously. Examination of an identical sample by m.c.d. spectroscopy in the near-i.r. region identified two distinct low-spin species at 1565 and 1785 nm. Irradiation with white light of the NO-treated cyanide-bound sample at 10K resulted in the disappearance of the g = 3.40 e.p.r. signal and the m.c.d. signal at 1785 nm, whereas a band at 1950nm increased in intensity. When the photolysed sample was warmed to 50K and held in the dark for 15 min, the original spectrum returned. Magnetization studies of the 1785nm m.c.d. band support the assignment of this signal to the same metal centre that gives rise to the g = 3.40 e.p.r. signal. The effect of NO on the oxidized cyanide-bound enzyme was compared with that obtained when the oxidized cyanide-bound species was taken to the partially reduced state. Cytochrome a3 is e.p.r.-detectable with a g-value of 3.58 [Johnson, Eglinton, Gooding, Greenwood & Thomson (1981) Biochem. J. 193, 699-708]. Its near-i.r. m.c.d. spectrum shifts from 1950nm in the oxidized cyanide-bound enzyme to 1545nm on addition of reductant. A scheme is advanced for the structure of the cytochrome a3-CuB site that allows for cyanide binding to Fea3 and NO binding to CuB. Cyanide is the bridging ligand in the ferromagnetically coupled cytochrome a3-CuB pair of oxidized cyanide-bound cytochrome c oxidase. The bridged structure and the magnetic interaction are broken when the enzyme is partially reduced. However, when NO binds to CuB the cyanide bridge remains intact, but now the odd spins of NO and CuB are magnetically coupled.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011190 Potassium Cyanide A highly poisonous compound that is an inhibitor of many metabolic processes, but has been shown to be an especially potent inhibitor of heme enzymes and hemeproteins. It is used in many industrial processes. Potassium Cyanide (K(14)CN),Potassium Cyanide (K(C(15)N)),Cyanide, Potassium
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic

Related Publications

B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
December 1977, FEBS letters,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
February 1965, Biochimica et biophysica acta,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
October 1991, The Biochemical journal,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
January 1970, Biochimica et biophysica acta,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
February 1979, FEBS letters,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
July 1974, Biochemistry,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
July 1984, Science (New York, N.Y.),
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
June 1990, Biophysical journal,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
August 1993, Biochemical Society transactions,
B C Hill, and T Brittain, and D G Eglinton, and P M Gadsby, and C Greenwood, and P Nicholls, and J Peterson, and A J Thomson, and T C Woon
August 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!