A study on the reaction of human erythrocytes with hydrogen peroxide. 1983

T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto

Membrane fluidity of human erythrocytes treated with H2O2 (1--20 mM) was studied using three kinds of fatty acid spin labels. A strongly immobilized signal appeared on exposure of erythrocytes to H2O2 but was not observed in either H2O2- or Fenton's reagent-treated ghosts or lipid vesicles prepared from H2O2-treated erythrocytes, indicating that the appearance of this signal necessitates the reaction of hemoglobin with H2O2 and is not due to lipid peroxidation. The ESR spectrum of maleimide-prelabeled erythrocytes showed an isotropic signal and the rotational correlation time (tau c) increased as the concentration of H2O2 was increased. Furthermore, maleimide labeling of H2O2-pretreated erythrocytes showed a strongly immobilized component, in addition to a weakly immobilized component. From the relative ratio of the signal intensity of hemoglobin and membrane proteins, it was found that label molecules bound predominantly to hemoglobin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of H2O2-treated erythrocytes demonstrated globin aggregation. Therefore, the changes in the ESR signal observed on H2O2 treatment may be due to some change in hemoglobin, such as globin aggregation or its binding to the membranes. The ESR spectrum of H2O2-treated erythrocytes at -196 degrees C is characterized by signals of nonheme ferric iron type (g equal to 4.3), low spin ferric iron, and free radical type at g equal to 2.00. At higher H2O2 concentrations, the ESR lines due to low spin ferric iron became broad and their peak heights decreased, compared with that at g equal to 2.00 or 4.3. These results indicate that oxidative stress such as decrease of membrane fluidity, lipid peroxidation, and globin aggregation in H2O2-treated erythrocytes is dependent on the reaction of hemoglobin with H2O2.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen

Related Publications

T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
January 1990, Cellular and molecular biology,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
January 1977, Archives of biochemistry and biophysics,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
July 1977, European journal of biochemistry,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
March 1997, Cellular and molecular life sciences : CMLS,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
May 1975, Canadian journal of biochemistry,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
September 1952, The Biochemical journal,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
September 1952, The Biochemical journal,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
April 2012, Journal of natural products,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
September 1950, Nature,
T Yamaguchi, and Y Fujita, and S Kuroki, and K Ohtsuka, and E Kimoto
July 1951, Nature,
Copied contents to your clipboard!