Quantitative regulation of acetylcholinesterase development in the muscle lineage cells of cleavage-arrested ascidian embryos. 1983

J R Whittaker

Some embryos of Ciona intestinalis which were permanently cleavage-arrested with cytochalasin B at the 1-cell, 4-cell, or 8-cell stages produced, after 12 or 16 h of development time (18 degrees C), a level of muscle acetylcholinesterase activity equal to that found in normal early and later larval stage embryos of the same age. Enzyme activity was measured quantitatively in single whole embryos by a colorimetric procedure using microdensitometry. Quantitative regulation of a differentiation end product indicated that the usual transcriptional and translational control mechanisms for that histospecific protein continued to operate normally in the cleavage-arrested embryos. Acetylcholinesterase expression was apparently regulated independently of the usual cell cytoplasmic volume in the muscle lineage cells and possibly also independently of the normal nuclear number in the lineage. There is an egg cytoplasmic determinant that is segregated into the muscle lineage cells during cleavage and which appears to specify the pathway of larval muscle development. Quantitative control of muscle acetylcholinesterase is possibly one of the consequences of how the agent releases genetic expression in the presumptive muscle cells. Quantitative regulation was not, however, a general functional activity of cleavage-arrested embryos. Mitochondrial cytochrome oxidase, an enzyme whose development is believed to be unaffected by cytoplasmic determinants, was not regulated quantitatively in cleavage-arrested embryos. Cytochrome oxidase activity of cleavage-arrested embryos, measured in single whole embryos by a colorimetric microdensitometry assay, increased only slightly during 16 h of development time whereas the activity in normal control embryos doubled during that time.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002938 Ciona intestinalis Vase or tube shaped TUNICATES with a cosmopolitan distribution. Ciona robusta,Vase Tunicate,Yellow Sea Squirt,Sea Squirt, Yellow,Sea Squirts, Yellow,Vase Tunicates,Yellow Sea Squirts
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014561 Urochordata A subphylum of chordates intermediate between the invertebrates and the true vertebrates. It includes the Ascidians. Ascidia,Tunicata,Ascidiacea,Ascidians,Sea Squirts,Tunicates,Urochordates,Ascidian,Sea Squirt,Squirt, Sea,Tunicate,Urochordate

Related Publications

J R Whittaker
May 1991, Development (Cambridge, England),
J R Whittaker
December 2013, Development, growth & differentiation,
Copied contents to your clipboard!