Barbiturate effects on acetylcholine-activated channels in Aplysia neurons. 1983

R E Wachtel, and W A Wilson

The effects of pentobarbital, phenobarbital, amobarbital, and diphenylbarbituric acid were studied by examining the average lifetime and conductance of acetylcholine-activated sodium channels in Aplysia neurons. Although none of the barbiturates tested modified the conductance of single-ion channels, pentobarbital and amobarbital had profound effects on channel lifetime. In the absence of barbiturate, relaxations in response to voltage jumps during steady-state current responses to acetylcholine have a single-exponential time course. In the presence of pentobarbital (75-500 microM), current relaxations consist of two exponential components that take the same direction as control relaxations. The faster component becomes faster and relatively larger at higher pentobarbital concentrations, while the slower component always has the same time constant as control. These results are not consistent with a sequential model of channel blockade described for local anesthetics, in which blocked channels must become unblocked before channel closure can occur. Kinetic data are better explained by a cyclic model in which blocked channels have the same probability of closing as nonblocked channels. Alternatively, the results can also be explained by a two-site model in which one binding site regulates the susceptibility of channels to the effects of the barbiturate, whereas occupation of the second site determines the extent of changes in channel lifetime. The effects of amobarbital were qualitatively similar to those of pentobarbital, while phenobarbital and diphenylbarbituric acid did not alter current relaxations at similar concentrations.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010424 Pentobarbital A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) Mebubarbital,Mebumal,Diabutal,Etaminal,Ethaminal,Nembutal,Pentobarbital Sodium,Pentobarbital, Monosodium Salt,Pentobarbitone,Sagatal,Monosodium Salt Pentobarbital
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias

Related Publications

R E Wachtel, and W A Wilson
June 1986, Cellular and molecular neurobiology,
R E Wachtel, and W A Wilson
December 1979, The Journal of physiology,
R E Wachtel, and W A Wilson
July 1987, The Journal of general physiology,
R E Wachtel, and W A Wilson
May 1985, British journal of pharmacology,
R E Wachtel, and W A Wilson
April 1981, The Journal of pharmacology and experimental therapeutics,
R E Wachtel, and W A Wilson
September 1980, Journal de physiologie,
R E Wachtel, and W A Wilson
March 1997, The Journal of general physiology,
R E Wachtel, and W A Wilson
May 2012, Journal of neurophysiology,
R E Wachtel, and W A Wilson
April 1977, Science (New York, N.Y.),
Copied contents to your clipboard!