Complete nucleotide sequence of the human corticotropin-beta-lipotropin precursor gene. 1983

H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa

The nucleotide sequence of an 8658-base-pair human genomic DNA segment containing the entire corticotropin-beta-lipotropin precursor gene has been determined, and some sequence features of the gene and its flanking regions have been analysed. The gene is composed of 7665 base pairs including two introns of 3708 and 2886 base pairs. Comparison of the 5'-flanking sequences of the human, bovine and mouse corticotropin-beta-lipotropin precursor genes reveals the presence of a highly conserved region, which contains sequences of 14-15 base pairs homologous with sequences located upstream of the mRNA start site of other glucocorticoid-regulated genes.

UI MeSH Term Description Entries
D008083 beta-Lipotropin A 90-amino acid peptide derived from post-translational processing of pro-opiomelanocortin (POMC) in the PITUITARY GLAND and the HYPOTHALAMUS. It is the C-terminal fragment of POMC with lipid-mobilizing activities, such as LIPOLYSIS and steroidogenesis. Depending on the species and the tissue sites, beta-LPH may be further processed to yield active peptides including GAMMA-LIPOTROPIN; BETA-MSH; and ENDORPHINS. Lipotropin,Adipozin,beta-LPH,beta-Lipotrophin,beta LPH,beta Lipotrophin,beta Lipotropin
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010908 Pituitary Hormones, Anterior Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Structurally, they include polypeptide, protein, and glycoprotein molecules. Adenohypophyseal Hormones,Anterior Pituitary Hormones,Hormones, Adenohypophyseal,Hormones, Anterior Pituitary
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011333 Pro-Opiomelanocortin A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP). POMC,Pro-Opiocortin,ACTH-Endorphin Precursor,ACTH-beta-Lipotropin Precursor,Corticotropin-beta-Lipotropin Precursor,Endorphin-ACTH Precursor,Opiocortin,Pre-POMC,Pre-pro-opiocortin,Preproopiomelanocortin,Pro-ACTH-Endorphin,Pro-Opio-Melanocortin,Proopiocortin,Proopiomelanocortin,ACTH Endorphin Precursor,ACTH beta Lipotropin Precursor,Corticotropin beta Lipotropin Precursor,Endorphin ACTH Precursor,Pre POMC,Pre pro opiocortin,Pro ACTH Endorphin,Pro Opio Melanocortin,Pro Opiocortin,Pro Opiomelanocortin
D011498 Protein Precursors Precursors, Protein
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
March 1979, Nature,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
July 1983, European journal of biochemistry,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
January 1982, Princess Takamatsu symposia,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
January 1981, European journal of biochemistry,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
December 1978, Proceedings of the National Academy of Sciences of the United States of America,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
November 1981, FEBS letters,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
April 1981, European journal of biochemistry,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
January 1982, The EMBO journal,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
February 1980, Nature,
H Takahashi, and Y Hakamata, and Y Watanabe, and R Kikuno, and T Miyata, and S Numa
September 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!