Transformation of human skeletal muscle cells by simian virus 40. 1983

A F Miranda, and L E Babiss, and P B Fisher

Molecular studies of the biochemical alterations involved in human myopathies have been restricted because of the finite life-span and slow growth rate of cultures derived from primary tissue. Because the tumor virus simian virus 40 (SV40) can alter both the growth properties and longevity of human cells, we have infected skeletal muscle cultures derived from four biopsies with a small-plaque variant of SV40 and analyzed the biological and biochemical properties of cloned myoblast derivatives. At early times after infection, myoblasts fused normally into multinucleated myotubes, and both unfused and fused cells contained SV40 tumor antigen (T antigen). After six to eight subcultures after infection, the ability of myoblasts to fuse diminished, and clonal cell lines were generated with increased growth rates and saturation densities. Transformed cultures also lost contact inhibition of growth and became anchorage independent. Unlike untransformed myoblasts, SV40-transformed clones did not undergo an increase in creatine kinase activity or a transition of creatine kinase isoenzymes from the BB form to the muscle-specific MM form. Analysis of the pattern of SV40 DNA integration by Southern blotting hybridization analysis in two cloned SV40-transformed myoblast cell lines (KJ-SV40 and PK-SV40) indicated that KJ-SV40 contained at least one site of SV40 DNA integration into chromosomal DNA and PK-SV40 contained at least three sites of SV40 DNA covalently linked to cellular DNA. Cell lysates and growth medium from PK-SV40 transformants contained infectious small-plaque variant SV40, whereas KJ-SV40 did not contain or produce detectable virus. These studies demonstrate that human myoblasts can be immortalized by SV40. This procedure may prove useful for generating large quantities of genetically deficient human cells for biochemical and molecular analysis.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000957 Antigens, Viral, Tumor Those proteins recognized by antibodies from serum of animals bearing tumors induced by viruses; these proteins are presumably coded for by the nucleic acids of the same viruses that caused the neoplastic transformation. Antigens, Neoplasm, Viral,Neoplasm Antigens, Viral,T Antigens,Tumor Antigens, Viral,Viral Tumor Antigens,Virus Transforming Antigens,Large T Antigen,Large T-Antigen,Small T Antigen,Small T-Antigen,T Antigen,T-Antigen,Viral T Antigens,Antigen, Large T,Antigen, Small T,Antigen, T,Antigens, T,Antigens, Viral Neoplasm,Antigens, Viral T,Antigens, Viral Tumor,Antigens, Virus Transforming,T Antigen, Large,T Antigen, Small,T Antigens, Viral,T-Antigen, Large,T-Antigen, Small,Transforming Antigens, Virus,Viral Neoplasm Antigens
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents

Related Publications

A F Miranda, and L E Babiss, and P B Fisher
January 1972, Archiv fur die gesamte Virusforschung,
A F Miranda, and L E Babiss, and P B Fisher
September 1968, The Journal of general virology,
A F Miranda, and L E Babiss, and P B Fisher
January 1978, Intervirology,
A F Miranda, and L E Babiss, and P B Fisher
January 1987, Archives of virology,
A F Miranda, and L E Babiss, and P B Fisher
January 1981, In vitro,
A F Miranda, and L E Babiss, and P B Fisher
October 1970, Journal of virology,
A F Miranda, and L E Babiss, and P B Fisher
July 1976, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
A F Miranda, and L E Babiss, and P B Fisher
January 1972, Advances in cancer research,
A F Miranda, and L E Babiss, and P B Fisher
January 1982, Princess Takamatsu symposia,
A F Miranda, and L E Babiss, and P B Fisher
December 1967, Journal of virology,
Copied contents to your clipboard!