The metabolism of halothane by hepatocytes: a comparison between free radical spin trapping and lipid peroxidation in relation to cell damage. 1983

A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano

The technique of free radical spin trapping has been applied to demonstrate the formation of free radicals produced during the metabolism of halothane by rat liver hepatocytes under hypoxic conditions. The results obtained support previous findings that reported sex differences in the metabolic activation of halothane by rats in vivo. Cell viability under hypoxic conditions, as judged by trypan blue staining and lactate dehydrogenase release, shows a correlation with the extent of metabolism of halothane as measured by electron spin resonance spectroscopy. The extent of lipid peroxidation was measured by diene conjugation, malondialdehyde production and chemiluminescence. The latter technique allowed the demonstration of lipid peroxidation during incubations of hepatocytes under aerobic conditions. The magnitude of the aerobic chemiluminescence showed a similar sex dependency to the extent of free radical formation under hypoxic conditions. Cell viability measurements show that halothane metabolism in both hypoxic and aerobic conditions can lead to cell death. Consequently, oxidative lipid damage could be a cause of cell damage, as judged by cell viability, additional to covalent binding.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005260 Female Females
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical

Related Publications

A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
July 1979, Acta pharmacologica et toxicologica,
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
January 1983, Hepatology (Baltimore, Md.),
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
September 1978, Archives of biochemistry and biophysics,
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
December 1981, Proceedings of the National Academy of Sciences of the United States of America,
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
April 1977, Archives of biochemistry and biophysics,
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
September 1987, Biochemical pharmacology,
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
January 1987, Biomedica biochimica acta,
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
November 1978, Toxicology and applied pharmacology,
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
November 1984, Lancet (London, England),
A Tomasi, and S Billing, and A Garner, and T F Slater, and E Albano
June 1998, Free radical biology & medicine,
Copied contents to your clipboard!