Interactions between Entamoeba histolytica, bacteria and intestinal cells. 1983

D Mirelman, and C Feingold, and A Wexler, and R Bracha

Axenically grown pathogenic and non-pathogenic isolates of Entamoeba histolytica have been shown to adhere to mammalian epithelial cells and bacteria by virtue of carbohydrate-binding proteins present on their cell surfaces. The interaction of amoeba isolates of low pathogenicity with a variety of gram-negative bacteria, mainly Escherichia coli strains which are readily ingested by the amoebae after relatively short periods, significantly increased the ability of the trophozoites to: (a) destroy and ingest intestinal epithelial cells; (b) secrete a cytopathic substance which morphologically affects a variety of tissue-cultured cells; and (c) cause hepatic abscesses in hamsters. Addition of carbohydrates that inhibit the lectin-mediated attachment of bacteria to amoebae prevented the enhancement of virulence. Interaction of the amoebae with bacteria that were heat-inactivated, glutaraldehyde-fixed or disrupted by sonication, as well as with bacteria precoated with antibodies or concanavalin A, did not lead to an increase in virulence. Moreover, short prior treatments of the bacteria with inhibitors of protein synthesis, but not with cell-wall synthesis inhibitors, also prevented the stimulation. The results indicate that interactions of amoebae with certain bacteria may be responsible for the increase in amoebic virulence.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D004748 Entamoeba histolytica A species of parasitic protozoa causing ENTAMOEBIASIS and amebic dysentery (DYSENTERY, AMEBIC). Characteristics include a single nucleus containing a small central karyosome and peripheral chromatin that is finely and regularly beaded. Endamoeba histolytica,histolytica, Endamoeba
D004749 Entamoebiasis Infection with amoebae of the genus ENTAMOEBA. Infection with E. histolytica causes DYSENTERY, AMEBIC and LIVER ABSCESS, AMEBIC. Entamoeba Infections,Entamoeba histolytica Infection,Entamoeba Infection,Entamoeba histolytica Infections,Entamoebiases,Infection, Entamoeba,Infection, Entamoeba histolytica,Infections, Entamoeba,Infections, Entamoeba histolytica
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006790 Host-Parasite Interactions The relationship between an invertebrate and another organism (the host), one of which lives at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Host-Parasite Relations,Parasite-Host Relations,Host-Parasite Relationship,Parasite-Host Interactions,Host Parasite Interactions,Host Parasite Relations,Host Parasite Relationship,Host-Parasite Interaction,Host-Parasite Relation,Host-Parasite Relationships,Interaction, Host-Parasite,Interaction, Parasite-Host,Interactions, Host-Parasite,Interactions, Parasite-Host,Parasite Host Interactions,Parasite Host Relations,Parasite-Host Interaction,Parasite-Host Relation,Relation, Host-Parasite,Relation, Parasite-Host,Relations, Host-Parasite,Relations, Parasite-Host,Relationship, Host-Parasite,Relationships, Host-Parasite

Related Publications

D Mirelman, and C Feingold, and A Wexler, and R Bracha
January 1979, Nature,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
November 1994, Infection and immunity,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
February 1985, The Australian journal of experimental biology and medical science,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
January 1992, Archives of medical research,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
January 1997, Archives of medical research,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
January 2008, Sub-cellular biochemistry,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
August 2019, Parasitology,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
January 2000, Archives of medical research,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
January 1986, Acta cytologica,
D Mirelman, and C Feingold, and A Wexler, and R Bracha
January 2019, Frontiers in cellular and infection microbiology,
Copied contents to your clipboard!