Isolation and characterization of plasmids carrying a partially defective Escherichia coli replication origin. 1983

A R Stuitje, and M Meijer

The replication origin (oriC) of the Escherichia coli chromosome has been cloned and the region essential for chromosomal replication has been delimited to 245 base pairs. In previous studies the ability of recombinants between oriC and ColE1-type vectors, to transform E. coli polA- strains was used to determine which nucleotides in oriC are essential for replication. In this paper we have used a different approach by isolating partial defective replication mutants of a minichromosome (pCM959) that contains oriC as the single replication origin. Our results demonstrate that many mutations are allowed within oriC that do not affect oriC function as measured by the ability to transform E. coli polA- strains. In the minimal oriC region we detected 8 mutations at positions that are conserved in the sequence of six bacterial origins. The implications of these results on previous work will be discussed. Our data also demonstrate that a mutation producing an oriC- phenotype may be suppressed by secondary mutations. An E. coli strain was found that facilitates the isolation of partially defective minichromosomes. The results with this strain indicate a specific function of the sequence surrounding the base pair at position 138.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006898 Hydroxylamines Organic compounds that contain the (-NH2OH) radical.

Related Publications

A R Stuitje, and M Meijer
January 1980, Proceedings of the National Academy of Sciences of the United States of America,
A R Stuitje, and M Meijer
August 1982, Nihon juigaku zasshi. The Japanese journal of veterinary science,
A R Stuitje, and M Meijer
January 1980, Molecular & general genetics : MGG,
A R Stuitje, and M Meijer
September 1982, Proceedings of the National Academy of Sciences of the United States of America,
A R Stuitje, and M Meijer
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!