[Neuronal correlates of changes in the defensive behavior of Helix lucorum L. during ontogeny]. 1983

I S Zakharov, and P M Balaban

In experiments on the isolated nervous system, responses of the same command neurones of avoidance behaviour to electrical stimulation of the intestinal nerve were compared in adult snails (Helix pomatia) and in snails 1-20 days old. Dynamics of spike reactions of the command neurones to rhythmic nerve stimulation differed in adult and newborn snails. In the neurones of young snails, no sensitization, common in the adult animals, was observed. Study of excitatory input in the command neurones during rhythmic nerve stimulation suggests independence of habituation of synaptic input amplitude and spike response sensitization, because dynamics of habituation coincided in the young and adult snails while spike response underwent sensitization only in adult animals.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D004924 Escape Reaction Innate response elicited by sensory stimuli associated with a threatening situation, or actual confrontation with an enemy. Flight Reaction,Escape Reactions,Flight Reactions,Reaction, Escape,Reaction, Flight,Reactions, Escape,Reactions, Flight
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D006185 Habituation, Psychophysiologic The disappearance of responsiveness to a repeated stimulation. It does not include drug habituation. Habituation (Psychophysiology),Habituation, Psychophysiological,Psychophysiologic Habituation,Psychophysiological Habituation,Habituations (Psychophysiology)
D006372 Helix, Snails A genus of chiefly Eurasian and African land snails including the principal edible snails as well as several pests of cultivated plants. Helix (Snails),Snails Helix
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

I S Zakharov, and P M Balaban
January 1987, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
I S Zakharov, and P M Balaban
January 1982, Neirofiziologiia = Neurophysiology,
I S Zakharov, and P M Balaban
January 1983, Neuroscience and behavioral physiology,
I S Zakharov, and P M Balaban
January 1987, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
I S Zakharov, and P M Balaban
January 1993, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
I S Zakharov, and P M Balaban
January 1993, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
I S Zakharov, and P M Balaban
January 1980, Neuroscience and behavioral physiology,
I S Zakharov, and P M Balaban
January 1999, Acta biologica Hungarica,
I S Zakharov, and P M Balaban
January 1987, Neuroscience and behavioral physiology,
Copied contents to your clipboard!