Age-dependent changes in glucose 1,6-bisphosphate levels and in the activities of glucose 1,6-bisphosphatase, and particulate hexokinase and 6-phosphogluconate dehydrogenase in rat skin. 1983

R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer

The levels of glucose 1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, changed in rat skin during growth: Glc-1,6-P2 increased during the first week of age, and thereafter was dramatically reduced during maturation. The activity of glucose 1,6-bisphosphatase, the enzyme that degradates Glc-1,6-P2, changed with age in an invert manner as compared to the changes in Glc-1,6-P2. These findings suggest that the age dependent changes in this enzyme's activity may account for the changes in intracellular Glc-1,6-P2 concentration. The age-related changes in Glc-1,6-P2 were accompanied by concomitant changes in the activities of particulate (mitochondrial) hexokinase and 6-phosphogluconate dehydrogenase, the two enzymes known to be inhibited by Glc-1,6-P2. The activities of both these enzymes in the soluble fraction were not changed with age. The particulate enzymes were more susceptible to inhibition by Glc-1,6-P2 than the soluble activities, which may explain why only the particulate, but not the soluble activities, correlated with the age-dependent changes in tissue Glc-1,6-P2. These results suggest that the changes in particulate hexokinase and 6-phosphogluconate dehydrogenase resulted from changes in intracellular concentration of Glc-1,6-P2. The marked reduction in Glc-1,6-P2 during maturation, accompanied by activation of mitochondrial hexokinase and 6-phosphogluconate dehydrogenase, may reflect an enhancement in skin metabolism during growth.

UI MeSH Term Description Entries
D010734 Phosphogluconate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43. 6-Phosphogluconate Dehydrogenase,6 Phosphogluconate Dehydrogenase,Dehydrogenase, 6-Phosphogluconate,Dehydrogenase, Phosphogluconate
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D005958 Glucosephosphates
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019298 Glucose-6-Phosphate An ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed) Glucose 6 Phosphate

Related Publications

R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
March 1979, Biochimica et biophysica acta,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
August 1984, Biochemical medicine,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
July 1988, Archives of biochemistry and biophysics,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
January 1985, The International journal of biochemistry,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
October 1968, Comparative biochemistry and physiology,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
January 1973, Voprosy meditsinskoi khimii,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
December 1960, Canadian journal of biochemistry and physiology,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
September 1988, Biochemistry international,
R Beitner, and G Lilling, and H Frucht, and H Ben-Porat, and Y Sofer
October 1986, Cell biochemistry and function,
Copied contents to your clipboard!