Nucleotide sequence of the herpes simplex virus type 2 (HSV-2) thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide and its comparison with the HSV-1 thymidine kinase gene. 1983

S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka

To analyze the boundaries of the functional coding region of the HSV-2(333) thymidine kinase gene (TK gene), deletion mutants of hybrid plasmid pMAR401 H2G, which contains the 17.5 kbp BglII-G fragment of HSV-2 DNA, were prepared and tested for capacity to transform LM(TK-) cells to the thymidine kinase-positive phenotype. These studies showed that hybrid plasmids containing 2.2-2.4 kbp subfragments of HSV-2 BglII-G DNA transformed LM(TK-) cells to the thymidine kinase-positive phenotype and suggested that the region critical for transformation might be less than 2 kbp. That the activity expressed in the transformants was HSV-2 thymidine kinase was shown by experiments with type-specific enzyme-inhibiting rabbit antisera and by disc-polyacrylamide gel electrophoresis analyses. DNA fragments of the HSV-2 TK gene were subcloned in phage M13mp9 and M13mp8. A sequence of 1656 bp containing the entire coding region of the TK gene and the flanking sequences was determined by the dideoxynucleotide chain termination method. Comparisons with the HSV-1(Cl 101) TK gene revealed that PstI, PvuII, and EcoRI cleavage sites had homologous locations as did promoter, translational start and stop, and polyadenylation signals. Extensive homology was observed in the nucleotide sequence preceding the ATG translational start signal and in portions of the coding region of the genes. Comparisons of the predicted amino acid sequences of the HSV-1 and HSV-2 thymidine kinase polypeptides revealed that both were enriched in alanine, arginine, glycine, leucine, and proline residues and that clear, but interrupted homology existed within several regions of the polypeptide chains. Stretches of 15-30 amino acid residues were identical in conserved regions. The possibility is suggested that domains containing some of the conserved amino acid sequences might have a role in substrate binding and as major antigenic determinants.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D018139 Simplexvirus A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN. Herpes Simplex Virus,Herpesvirus 1, Saimiriine,Herpesvirus 1, Saimirine,Herpesvirus 16, Cercopithecine,Marmoset Virus,Cercopithecine Herpesvirus 16,Herpes Labialis Virus,Herpes-T Virus,Herpesvirus 1 (alpha), Saimirine,Herpesvirus Hominis,Herpesvirus Papio 2,Herpesvirus Platyrhinae,Marmoset Herpesvirus,Saimiriine Herpesvirus 1,Herpes Labialis Viruses,Herpes Simplex Viruses,Herpes T Virus,Herpes-T Viruses,Herpesvirus Homini,Herpesvirus, Marmoset,Herpesviruses, Marmoset,Homini, Herpesvirus,Hominis, Herpesvirus,Labialis Virus, Herpes,Labialis Viruses, Herpes,Marmoset Herpesviruses,Marmoset Viruses,Platyrhinae, Herpesvirus,Saimirine Herpesvirus 1,Simplexviruses,Virus, Herpes Labialis,Viruses, Herpes Labialis

Related Publications

S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
June 1983, Journal of virology,
S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
March 1989, Virus genes,
S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
December 1980, Nucleic acids research,
S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
November 2012, Antiviral research,
S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
March 2006, Nihon rinsho. Japanese journal of clinical medicine,
S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
January 1982, Virology,
S Kit, and M Kit, and H Qavi, and D Trkula, and H Otsuka
March 1980, Journal of virology,
Copied contents to your clipboard!