Effects of preoptic thermal stimulation on electrical activities of neurosecretory cells in paraventricular and periventricular nuclei of the hypothalamus. 1983

K Matsumura, and T Nakayama, and Y Ishikawa

In anesthetized rats, out of 48 paraventricular (PaV) and 19 periventricular (PeV) neurosecretory cells, 12 PaV and 6 PeV cells increased and 10 PaV cells decreased the electrical activities statically in response to preoptic and anterior hypothalamic warming. Four PaV and 2 PeV cells responded dynamically to the thermal stimulation. These results suggest various influences of thermal signals on the neuroendocrine system.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009489 Neurosecretion The production and release of substances such as NEUROTRANSMITTERS or HORMONES from nerve cells. Neurosecretions
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013823 Thermoreceptors Cellular receptors which mediate the sense of temperature. Thermoreceptors in vertebrates are mostly located under the skin. In mammals there are separate types of thermoreceptors for cold and for warmth and NOCICEPTORS which detect cold or heat extreme enough to cause pain. Thermoreceptor

Related Publications

K Matsumura, and T Nakayama, and Y Ishikawa
March 1980, Journal of anatomy,
K Matsumura, and T Nakayama, and Y Ishikawa
May 1974, Zhurnal evoliutsionnoi biokhimii i fiziologii,
K Matsumura, and T Nakayama, and Y Ishikawa
January 1971, Acta anatomica,
K Matsumura, and T Nakayama, and Y Ishikawa
April 1988, Sheng li xue bao : [Acta physiologica Sinica],
K Matsumura, and T Nakayama, and Y Ishikawa
February 1972, Journal of anatomy,
K Matsumura, and T Nakayama, and Y Ishikawa
April 1972, The Journal of physiology,
K Matsumura, and T Nakayama, and Y Ishikawa
December 1968, Doklady Akademii nauk SSSR,
K Matsumura, and T Nakayama, and Y Ishikawa
April 1995, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!