Modification of thermosensitivity of HeLa cells by sodium butyrate, dibutyryl cyclic adenosine 3':5'-monophosphate, and retinoic acid. 1984

S H Kim, and S Q He, and J H Kim

Studies were carried out with HeLa S-3 cells to determine whether exposure of the cells to "differentiating agents" would modify the thermosensitivity of cells under the cellular conditions where there is no significant perturbation of the cell cycle distribution. Sodium butyrate, dibutyryl cyclic adenosine 3':5'-monophosphate (dbcAMP), and retinoic acid all afforded pronounced protective effects on the thermosensitivity of HeLa cells. The kinetics of expression of thermal resistance induced by the agents varied with different agents. Sodium butyrate (1 mM) was only capable of inducing the thermal resistance during the time of heating (42 degrees), while a minimum 8-hr exposure to dbcAMP (1 mM) and 48-hr exposure to retinoic acid (10 microM) prior to heating at 42 degrees were required to demonstrate the thermal resistance. The presence of dbcAMP and retinoic acid was not required during the heating. The thermal resistance acquired by the exposure of cells to dbcAMP and retinoic acid was reversible following the removal of the drugs with a time course varying with the duration of preexposure time. This difference in the kinetics of thermal resistance suggests that these agents may have a different mode of action for the induction of thermal resistance in HeLa cells.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D020148 Butyric Acid A four carbon acid, CH3CH2CH2COOH, with an unpleasant odor that occurs in butter and animal fat as the glycerol ester. Butanoic Acid,Butyric Acid Magnesium Salt,Butyric Acid, Sodium Salt,Magnesium Butyrate,Magnesium Dibutyrate,Sodium Butyrate,Acid, Butanoic,Acid, Butyric,Butyrate, Magnesium,Butyrate, Sodium,Dibutyrate, Magnesium

Related Publications

S H Kim, and S Q He, and J H Kim
October 1974, Archives of biochemistry and biophysics,
S H Kim, and S Q He, and J H Kim
July 1971, Journal of the National Cancer Institute,
S H Kim, and S Q He, and J H Kim
April 1973, The Journal of biological chemistry,
S H Kim, and S Q He, and J H Kim
December 1968, The Journal of clinical endocrinology and metabolism,
S H Kim, and S Q He, and J H Kim
August 1974, Lipids,
Copied contents to your clipboard!