Cloning and physical analysis of the pyrF gene (coding for orotidine-5'-phosphate decarboxylase) from Escherichia coli K-12. 1983

W P Donovan, and S R Kushner

The structural gene (pyrF) for orotidine-5'-phosphate decarboxylase (OMPase, EC 4.1.1.23) of Escherichia coli K-12 has been cloned as part of two PvuII fragments (1.2 and 0.9 kb) to form the recombinant plasmid pDK26. Extracts of E. coli [pDK26] had 80-fold higher levels of OMPase activity than wild-type strains without the plasmid. Maxicell analysis showed that pDK26 encoded two proteins of Mr 27 000 [pyrF(OMPase)] and 15 000 (Z) in addition to the ampicillin-resistance determinant. The approximate initiation site and direction of transcription of the pyrF gene have been determined. Extracts of strains that were deficient in polynucleotide phosphorylase (PNPase) had higher levels of OMPase activity than isogenic PNPase+ strains when one or two copies of the pyrF gene were present per cell either in the chromosome or on a low copy number plasmid. However, no significant difference in OMPase activity was seen in PNPase- strains that contained the pyrF gene cloned in a multicopy plasmid. Southern hybridization experiments showed that the yeast gene for OMPase (URA3) and the E. coli pyrF gene had less than 70% DNA sequence homology.

UI MeSH Term Description Entries
D009964 Orotidine-5'-Phosphate Decarboxylase Orotidine-5'-phosphate carboxy-lyase. Catalyzes the decarboxylation of orotidylic acid to yield uridylic acid in the final step of the pyrimidine nucleotide biosynthesis pathway. EC 4.1.1.23. Orotidine Phosphate Carboxy-Lyase,Orotidylate Decarboxylase,OMP Decarboxylase,Orotidine 5 Phosphate Decarboxylase,Orotidine 5' Phosphate Decarboxylase,Orotidine-5-Phosphate Decarboxylase,Carboxy-Lyase, Orotidine Phosphate,Decarboxylase, OMP,Decarboxylase, Orotidine-5'-Phosphate,Decarboxylase, Orotidine-5-Phosphate,Decarboxylase, Orotidylate,Orotidine Phosphate Carboxy Lyase,Phosphate Carboxy-Lyase, Orotidine
D011117 Polyribonucleotide Nucleotidyltransferase An enzyme of the transferase class that catalyzes the reaction RNA(n+1) and orthophosphate to yield RNA(n) and a nucleoside diphosphate, or the reverse reaction. ADP, IDP, GDP, UDP, and CDP can act as donors in the latter case. (From Dorland, 27th ed) EC 2.7.7.8. Polynucleotide Phosphorylase,Nucleotidyltransferase, Polyribonucleotide,Phosphorylase, Polynucleotide
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

W P Donovan, and S R Kushner
March 2007, FEMS microbiology letters,
W P Donovan, and S R Kushner
November 1980, Gene,
Copied contents to your clipboard!