Construction of a gene library from the nitrogen-fixing aerobe Azotobacter vinelandii. 1983

M Medhora, and S H Phadnis, and H K Das

We have cloned the DNA of Azotobacter vinelandii in the cosmid pHC79. Recombinant cosmids that can transform Escherichia coli leuB- to a Leu+ phenotype, as well as those having sequence homology to the nitrogenase structural genes of Klebsiella pneumoniae have been selected from this library.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001395 Azotobacter A genus of gram-negative, aerobic bacteria found in soil and water. Its organisms occur singly, in pairs or irregular clumps, and sometimes in chains of varying lengths.
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic

Related Publications

M Medhora, and S H Phadnis, and H K Das
January 1969, Biofizika,
M Medhora, and S H Phadnis, and H K Das
January 1968, Canadian journal of microbiology,
M Medhora, and S H Phadnis, and H K Das
July 1972, The Journal of biological chemistry,
M Medhora, and S H Phadnis, and H K Das
June 1975, Archives of microbiology,
M Medhora, and S H Phadnis, and H K Das
July 1984, Journal of bacteriology,
M Medhora, and S H Phadnis, and H K Das
November 1981, Journal of bacteriology,
M Medhora, and S H Phadnis, and H K Das
May 1992, Applied and environmental microbiology,
Copied contents to your clipboard!