Genetic and molecular analyses of Escherichia coli K1 antigen genes. 1984

R P Silver, and W F Vann, and W Aaronson

The plasmid pSR23, composed of a 34-kilobase E. coli chromosomal fragment inserted into the BamHI site of the pHC79 cosmid cloning vector, contains genes encoding biosynthesis of the K1 capsular polysaccharide. Deletions, subclones, and Tn5 insertion mutants were used to localize the K1 genes on pSR23. The only deletion derivative of pSR23 that retained the K1 phenotype lacked a 2.7-kilobase EcoRI fragment. Subclones containing HindIII and EcoRI fragments of pSR23 did not produce K1. Cells harboring pSR27, a subclone containing a 23-kilobase BamHI fragment, synthesized K1 that was not detectable extracellularly. Six acapsular Tn5 insertion mutants of three phenotypic classes were observed. Class I mutants synthesized K1 only when N-acetylneuraminic acid (NANA) was provided in the medium. Reduced amounts of K1 were detectable in cell extracts of class II mutants. Class III mutants did not produce detectable K1 in either extracts or when cells were provided exogenous NANA. All mutants had sialyltransferase activity. Analysis in the E. coli minicell system of proteins expressed by derivatives of pSR23 identified a minimum of 12 polypeptides, ranging in size from 18,000 to 80,000 daltons, involved in K1 biosynthesis. The 16-kilobase coding capacity required for the proteins was located in three gene clusters designated A, B, and C. We propose that the A cluster contains a NANA operon of two genes that code for proteins with apparent molecular weights of 45,000 and 50,000. The A region also includes a 2-kilobase segment involved in regulation of K1 synthesis. The B region encoding five protein species appears responsible for the translocation of the polymer from its site of synthesis on the cytoplasmic membrane to the cell surface. The C region encodes four protein species. Since the three gene clusters appear to be coordinately regulated. we propose that they constitute a kps regulon.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

R P Silver, and W F Vann, and W Aaronson
August 1984, Journal of clinical microbiology,
R P Silver, and W F Vann, and W Aaronson
October 2012, Journal of medical microbiology,
R P Silver, and W F Vann, and W Aaronson
September 2000, Molecular microbiology,
R P Silver, and W F Vann, and W Aaronson
January 1990, Journal of clinical pathology,
R P Silver, and W F Vann, and W Aaronson
July 1986, Journal of bacteriology,
R P Silver, and W F Vann, and W Aaronson
March 1966, Journal of bacteriology,
R P Silver, and W F Vann, and W Aaronson
March 1980, Infection and immunity,
R P Silver, and W F Vann, and W Aaronson
January 1991, Acta microbiologica Hungarica,
R P Silver, and W F Vann, and W Aaronson
January 1976, Lancet (London, England),
Copied contents to your clipboard!