Choline acts as agonist and blocker for Aplysia cholinergic synapses. 1984

D Gardner, and R L Ruff, and R L White

Several identified neurons of the Aplysia buccal ganglia respond to choline. Iontophoretic applications of either choline or acetylcholine (ACh) to voltage-clamped inhibitory follower neurons produce similar currents. Peak amplitudes of choline responses were 10-100% of ACh responses on the same cell. Choline currents were curare blockable and reversed at -69 +/- 2 mV, within 1 mV of postsynaptic current (IPSC) reversal. Application of 1 mM choline to the bath produces more prolonged effects than an initial conductance change. Choline depressed IPSC amplitude by 42 +/- 5% and prolonged IPSC decay time constant by 25 +/- 7%. The slowing was reversible but the depression was not. Use of choline as a Na substitute may therefore involve unexpected partial agonist action; even where conductance changes are transient or inapparent, choline may alter synaptic responses. Bath choline had variable effects on cholinergic self-inhibitory synapses, blocking in six trials but not in three others. Voltage clamping cells BL and BR7, in which monosynaptic cholinergic PSPs are diphasic, reveals underlying early inward and late outward currents. Choline activates only the late outward current component. Correspondingly, bath choline blocks only the late outward component, as does eserine and ACh. This block is not seen with neostigmine, and so is unlikely to be related to cholinesterase inhibition. The early inward current component, revealed by block of the late component by choline or ACh, decays exponentially. Decay time constant is exponentially dependent on membrane potential over the range -20 to -100 mV, with 63-mV depolarization speeding decay e-fold. Eserine prolongs decay and steepens voltage dependence. The late outward component decays with voltage-independent time constant of 48 +/- 5 ms. Both the time integral of synaptic conductance and the ratio of synaptic charge transfer to peak synaptic current of the early inward component of the cell 7 response are reduced by depolarization. Voltage-dependent duration thus combines with reduced driving force in diminishing the excitatory effect of this component at depolarized levels, allowing the inhibitory component to predominate. In this diphasic synapse, voltage dependence of the time course of one component thus serves an easily identified function.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias

Related Publications

D Gardner, and R L Ruff, and R L White
February 2017, The Journal of physiology,
D Gardner, and R L Ruff, and R L White
January 2018, Frontiers in molecular neuroscience,
D Gardner, and R L Ruff, and R L White
July 1988, Biochemical pharmacology,
D Gardner, and R L Ruff, and R L White
February 1982, Proceedings of the Royal Society of London. Series B, Biological sciences,
D Gardner, and R L Ruff, and R L White
October 1980, Brain research,
D Gardner, and R L Ruff, and R L White
July 1978, Journal of neurobiology,
D Gardner, and R L Ruff, and R L White
September 1979, Brain research,
D Gardner, and R L Ruff, and R L White
November 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!