Possible regulation of phospholipase C activity in human platelets by phosphatidylinositol 4',5'-bisphosphate. 1984

G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid

Phospholipase C from human platelets was found to catalyze the Ca2+-dependent degradation of phosphatidylinositol (PI), phosphatidylinositol 4'-phosphate (DPI), and phosphatidylinositol 4',5'-bisphosphate (TPI) at Ca2+ concentrations from 150 microM to 5 mM. Both DPI and TPI inhibited the hydrolysis of [2-3H]inositol-labeled PI (250 microM) in a concentration-dependent manner. The use of DPI and TPI from beef brain, both of which have fatty acid compositions different from that of soybean PI, permitted an assessment of the inhibitory effect of polyphosphoinositides on the hydrolysis of PI by phospholipase C. Fatty acid analysis of the diacylglycerols formed demonstrated that DPI and TPI, when incubated in mixture with PI, were competitive substrates for PI hydrolysis. Increasing the DPI/PI ratio from 0 to 0.3 caused a shift in the degradation of PI to DPI without greatly affecting the formation of 1,2-diacylglycerol. TPI alone, or in mixture with PI, was a poor substrate for phospholipase C. Increasing the TPI/PI ratio from 0 to 0.21, on the other hand, inhibited both PI degradation (greater than or equal to 95%) and overall formation of 1,2-diacylglycerol (greater than or equal to 82%). Kinetic analysis revealed that TPI acts as a mixed-type inhibitor with a Ki of about 10 microM. The Ka for Ca2+ in PI hydrolysis was profoundly increased from 5 to 180 microM when TPI (36 microM) was included with PI (250 microM). Optimum PI degradation under these conditions was only attained when the calcium concentration approached 4 mM. Analysis of phospholipids from unstimulated human platelets from five different donors revealed DPI/PI and TPI/PI ratios of 0.42 and 0.16, respectively. These findings, combined with the observed inhibition of PI hydrolysis by TPI at a TPI/PI ratio of 0.16, would suggest that in unstimulated platelets phospholipase C activity may be inhibited by greater than or equal to 75%. Changes in 33P-prelabeled phospholipids of intact platelets upon stimulation with thrombin indicated a transient decline in 33P label of both TPI and DPI (15 s) followed by an increase in [33P]phosphatidic acid but no change in [33P]PI. The finding that DPI is selectively degraded by phospholipase C in mixture with PI at DPI/PI ratios determined to be present in unstimulated platelets indicates that DPI may be more important than PI in the formation of 1,2-diacylglycerol which is believed to serve as precursor of arachidonic acid for thromboxane biosynthesis. Furthermore, the results suggest that in human platelets TPI may serve as modulator for the formation of 1,2-diacylglycerol from inositol phospholipids.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D018129 Phosphatidylinositol Phosphates Phosphatidylinositols in which one or more alcohol group of the inositol has been substituted with a phosphate group. Polyphosphoinositides,Phosphatidyl Inositol Phosphates,Polyphosphoinositide,Inositol Phosphates, Phosphatidyl,Phosphates, Phosphatidyl Inositol,Phosphates, Phosphatidylinositol
D019269 Phosphatidylinositol 4,5-Diphosphate A phosphoinositide present in all eukaryotic cells, particularly in the plasma membrane. It is the major substrate for receptor-stimulated phosphoinositidase C, with the consequent formation of inositol 1,4,5-triphosphate and diacylglycerol, and probably also for receptor-stimulated inositol phospholipid 3-kinase. (Kendrew, The Encyclopedia of Molecular Biology, 1994) PtdInsP2,Phosphatidylinositol 4,5-Biphosphate,Phosphatidylinositol Phosphate, PtdIns(4,5)P2,Phosphatidylinositol-4,5-Biphosphate,PtIns 4,5-P2,PtdIns(4,5)P2,PtdInsP,4,5-Biphosphate, Phosphatidylinositol,4,5-Diphosphate, Phosphatidylinositol,Phosphatidylinositol 4,5 Biphosphate,Phosphatidylinositol 4,5 Diphosphate

Related Publications

G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
November 2009, Proceedings of the National Academy of Sciences of the United States of America,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
February 1994, The Journal of biological chemistry,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
March 1991, Brain research,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
February 1989, Archives of biochemistry and biophysics,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
March 1994, The Biochemical journal,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
January 1991, Methods in enzymology,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
June 1990, Biochemical pharmacology,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
January 1993, Advances in experimental medicine and biology,
G Graff, and N Nahas, and M Nikolopoulou, and V Natarajan, and H H Schmid
March 1997, Drug and alcohol dependence,
Copied contents to your clipboard!