Isolation and characterization of calmodulin from the motile green alga Chlamydomonas reinhardtii. 1984

M Schleicher, and T J Lukas, and D M Watterson

Calmodulin, a calcium-binding protein with no known enzymatic activity but multiple, in vitro effector activities, has been purified to apparent homogeneity from the unicellular green alga Chlamydomonas reinhardtii and compared to calmodulin from vertebrates and higher plants. Chlamydomonas calmodulin was characterized in terms of electrophoretic mobility, amino acid composition, limited amino acid sequence analysis, immunoreactivity, and phosphodiesterase activation. Chlamydomonas calmodulin has two histidine residues similar to calmodulin from the protozoan Tetrahymena. However, unlike the protozoan calmodulin, only one of the histidinyl residues of Chlamydomonas calmodulin is found in the COOH-terminal third of the molecule. Chlamydomonas calmodulin lacks trimethyllysine but does have a lysine residue at the amino acid sequence position corresponding to the trimethyllysine residue in bovine brain and spinach calmodulins. The lack of this post-translational modification does not prevent Chlamydomonas calmodulin from quantitatively activating bovine brain phosphodiesterase. These studies also demonstrate that this unique calmodulin from a phylogenetically earlier eukaryote may be as similar to vertebrate calmodulin as it is to higher plant calmodulins, and suggest that Chlamydomonas calmodulin may more closely approximate the characteristics of a putative precursor of the calmodulin family than any calmodulin characterized to date.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002696 Chlamydomonas A genus GREEN ALGAE in the order VOLVOCIDA. It consists of solitary biflagellated organisms common in fresh water and damp soil. Chlamydomona
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Schleicher, and T J Lukas, and D M Watterson
January 2006, Methods in molecular biology (Clifton, N.J.),
M Schleicher, and T J Lukas, and D M Watterson
June 1993, European journal of biochemistry,
M Schleicher, and T J Lukas, and D M Watterson
January 2006, Nature protocols,
M Schleicher, and T J Lukas, and D M Watterson
January 2007, Amino acids,
M Schleicher, and T J Lukas, and D M Watterson
January 2000, Plant molecular biology,
M Schleicher, and T J Lukas, and D M Watterson
March 2017, Phytochemistry,
M Schleicher, and T J Lukas, and D M Watterson
September 2015, Journal of plant physiology,
M Schleicher, and T J Lukas, and D M Watterson
June 1991, European journal of biochemistry,
M Schleicher, and T J Lukas, and D M Watterson
February 2020, Archives of biochemistry and biophysics,
Copied contents to your clipboard!