Optical and electron paramagnetic resonance spectroscopic studies on purine hydroxylase II from Aspergillus nidulans. 1984

M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel

Purine hydroxylase II from Aspergillus nidulans contains a molybdenum cofactor very similar to that found in a number of other molybdenum-containing hydroxylases. (A. nidulans contains two purine hydroxylases, I and II, related to each other by possession of a common cofactor and overlapping substrate specificity.) Addition of reducing substrates effects bleaching of the visible absorption spectrum of the enzyme, the decrease in absorbance at 450 nm being linearly proportional to that at 550 nm. No increase in absorption at longer wavelengths was observed during such titrations. Electron paramagnetic resonance studies of reduced samples of native and modified enzyme species showed the presence of a number of Mo(V) signals (gav = 1.97), exhibiting H hyperfine coupling, comparable to those in the corresponding enzymes from other sources. The enzyme possesses two non-heme-iron-sulfur centers, one (Fe2S2)I with gav less than 2.0 and the other (Fe2S2)II with gav greater than 2.0. The flavin radical signal observed at pH 7.8 had a linewidth of 1.5 mT, indicating it to be the anionic form FAD- . In this respect purine hydroxylase II is unique among all molybdenum-containing hydroxylases studied to date.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D001233 Aspergillus nidulans A species of imperfect fungi from which the antibiotic nidulin is obtained. Its teleomorph is Emericella nidulans. Aspergillus nidulellus,Emericella nidulans
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
December 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
November 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
January 1978, Biochemical Society transactions,
M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
May 2004, Dalton transactions (Cambridge, England : 2003),
M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
December 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
June 1985, Biophysical chemistry,
M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
July 1979, Molecular & general genetics : MGG,
M P Coughlan, and R K Mehra, and M J Barber, and L M Siegel
April 2006, Magnetic resonance in medicine,
Copied contents to your clipboard!