Virus-plasmid interactions: mutants of bacteriophage T3 that abortively infect plasmid F-containing (F+) strains of Escherichia coli. 1984

I J Molineux, and J L Spence

Bacteriophage T7 and many closely related phages abortively infect plasmid F-containing (F+) strains of Escherichia coli. However phage T3, which is also closely related to T7, grows normally in F+ hosts. Mutants of phage T3 that, like T7, are subject to F-mediated restriction have been isolated. These T3 mutants lack or are defective in one or both of two genes that are nonessential for phage growth in F-, wild-type strains. Our results show that the products of phage T3 gene 1.1 or 1.2, or both, are essential for growth and suggest that the comparable phage T7 genes are naturally defective in their ability to counteract the inhibitory effects of F-encoded proteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005144 F Factor A plasmid whose presence in the cell, either extrachromosomal or integrated into the BACTERIAL CHROMOSOME, determines the "sex" of the bacterium, host chromosome mobilization, transfer via conjugation (CONJUGATION, GENETIC) of genetic material, and the formation of SEX PILI. Resistance Transfer Factor,Sex Factor F,Sex Factor, Bacterial,Bacterial Sex Factor,Bacterial Sex Factors,F Plasmid,F Plasmids,Factor, Bacterial Sex,Factors, Bacterial Sex,Fertility Factor, Bacterial,Sex Factors, Bacterial,Bacterial Fertility Factor,Bacterial Fertility Factors,F Factors,Factor F, Sex,Factor Fs, Sex,Factor, Bacterial Fertility,Factor, F,Factor, Resistance Transfer,Factors, Bacterial Fertility,Factors, F,Factors, Resistance Transfer,Fertility Factors, Bacterial,Fs, Sex Factor,Plasmid, F,Plasmids, F,Resistance Transfer Factors,Sex Factor Fs,Transfer Factor, Resistance,Transfer Factors, Resistance
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

I J Molineux, and J L Spence
July 1995, Journal of bacteriology,
I J Molineux, and J L Spence
November 2005, EcoSal Plus,
I J Molineux, and J L Spence
September 1980, Journal of bacteriology,
I J Molineux, and J L Spence
January 1987, Contributions to microbiology and immunology,
I J Molineux, and J L Spence
March 1945, Genetics,
I J Molineux, and J L Spence
March 1981, Microbiological reviews,
Copied contents to your clipboard!