Isopentenyl pyrophosphate isomerase and prenyltransferase from tomato fruit plastids. 1984

S L Spurgeon, and N Sathyamoorthy, and J W Porter

Isopentenyl pyrophosphate isomerase has been isolated from an extract of tomato fruit plastids and purified 245-fold by fractionation with ammonium sulfate, gel filtration on Bio-Gel A 1.5m, ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephadex G-100, and chromatofocusing. Gel filtration on Sephadex G-100 separated the isopentenyl pyrophosphate isomerase from a prenyltransferase fraction that catalyzed the conversion of isopentenyl pyrophosphate to acid-labile compounds in the presence of dimethylallyl, geranyl, or farnesyl pyrophosphates. The molecular weights of the isopentenyl pyrophosphate isomerase and prenyltransferase were determined to be 34,000 and 64,000, respectively, by gel filtration on Sephadex G-100. The only cofactor required by either the isomerase or the prenyltransferase was a divalent cation, either Mg2+ or Mn2+. Isopentenyl pyrophosphate isomerase could also be totally inactivated by 1 X 10(-3) M iodoacetamide, and this property was utilized in the assay of prenyltransferase activity in the presence of contaminating isomerase. The inactivation of isomerase by iodoacetamide is consistent with the stabilization of isopentenyl pyrophosphate isomerase by dithiothreitol. The Km of isopentenyl pyrophosphate isomerase for isopentenyl pyrophosphate was found to be 5.7 X 10(-6).

UI MeSH Term Description Entries
D007460 Iodoacetamide An alkylating sulfhydryl reagent. Its actions are similar to those of iodoacetate.
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D003067 Coenzymes Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes. Coenzyme,Enzyme Cofactor,Cofactors, Enzyme,Enzyme Cofactors,Cofactor, Enzyme

Related Publications

S L Spurgeon, and N Sathyamoorthy, and J W Porter
August 1968, Journal of biochemistry,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
July 1969, Journal of biochemistry,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
February 1968, The Biochemical journal,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
December 1977, Archives of biochemistry and biophysics,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
February 1977, The Journal of biological chemistry,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
February 1960, The Journal of biological chemistry,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
December 1973, The Journal of biological chemistry,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
January 2005, Journal of the American Chemical Society,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
September 1983, Journal of biochemistry,
S L Spurgeon, and N Sathyamoorthy, and J W Porter
August 1986, Archives of biochemistry and biophysics,
Copied contents to your clipboard!