Molecular cloning, DNA structure and expression of the Escherichia coli D-xylose isomerase. 1984

K A Briggs, and W E Lancashire, and B S Hartley

The D-xylose isomerase (EC 5.3.1.5) gene from Escherichia coli was cloned and isolated by complementation of an isomerase-deficient E. coli strain. The insert containing the gene was restriction mapped and further subcloning located the gene in a 1.6-kb Bg/II fragment. This fragment was sequenced by the chain termination method, and showed the gene to be 1002 bp in size. The Bg/II fragment was cloned into a yeast expression vector utilising the CYCl yeast promoter. This construct allowed expression in E. coli grown on xylose but not glucose suggesting that the yeast promoter is responding to the E. coli catabolite repression system. No expression was detected in yeast from this construct and this is discussed in terms of the upstream region in the E. coli insert with suggestions of how improved constructs may permit achievement of the goal of a xylose-fermenting yeast.

UI MeSH Term Description Entries
D002238 Carbohydrate Epimerases Enzymes that catalyze the epimerization of chiral centers within carbohydrates or their derivatives. EC 5.1.3. Carbohydrate Isomerases,Epimerases, Carbohydrate,Isomerases, Carbohydrate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

K A Briggs, and W E Lancashire, and B S Hartley
February 1985, Biochemical and biophysical research communications,
K A Briggs, and W E Lancashire, and B S Hartley
April 1983, Applied and environmental microbiology,
K A Briggs, and W E Lancashire, and B S Hartley
November 1996, FEMS microbiology letters,
K A Briggs, and W E Lancashire, and B S Hartley
January 2009, Prikladnaia biokhimiia i mikrobiologiia,
K A Briggs, and W E Lancashire, and B S Hartley
September 2016, Biotechnology progress,
K A Briggs, and W E Lancashire, and B S Hartley
January 1997, Applied biochemistry and biotechnology,
K A Briggs, and W E Lancashire, and B S Hartley
January 1990, Chinese journal of biotechnology,
K A Briggs, and W E Lancashire, and B S Hartley
April 1992, Protein engineering,
K A Briggs, and W E Lancashire, and B S Hartley
January 1991, Agricultural and biological chemistry,
K A Briggs, and W E Lancashire, and B S Hartley
September 1986, Biotechnology progress,
Copied contents to your clipboard!