DNA-stimulated ATPase activity on the lon (CapR) protein. 1984

M F Charette, and G W Henderson, and L L Doane, and A Markovitz

The gene product of the pleiotropic lon (also called capR) locus in Escherichia coli, the CapR protein, is an ATP hydrolysis-dependent protease and a nonspecific nucleic acid-binding protein. We demonstrated that it is also a DNA-stimulated adenosine triphosphatase (ATPase). This new activity is distinct from the protease-associated ATPase activity and occurs in the absence of proteolytic substrate. The reaction requires the presence of a divalent cation and has a pH optimum of 8.0. The products of the reaction are ADP and inorganic phosphate. No adenylation or phosphorylation of the DNA or proteins was detected. The maximum rate of ATP hydrolysis occurs in the presence of supercoiled (form I) DNA. Relaxed circles (form II), double-stranded DNA, and single-stranded DNA are less effective in promoting ATPase activity, whereas RNA is inactive. The DNA-stimulated ATPase activity is inhibited by a mutationally altered form of the CapR protein called the CapR9 protein. The interaction of the CapR and CapR9 subunits suggests that this enzymatic activity of the CapR protein is oligomeric in the presence of DNA. Our in vitro experiments indicate a possible role for nucleic acids in the regulation of all lon (capR) activity.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D002364 Caseins A mixture of related phosphoproteins occurring in milk and cheese. The group is characterized as one of the most nutritive milk proteins, containing all of the common amino acids and rich in the essential ones. alpha-Casein,gamma-Casein,AD beta-Casein,Acetylated, Dephosphorylated beta-Casein,Casein,Casein A,K-Casein,Sodium Caseinate,alpha(S1)-Casein,alpha(S1)-Casein A,alpha(S1)-Casein B,alpha(S1)-Casein C,alpha(S2)-Casein,alpha-Caseins,beta-Casein,beta-Caseins,epsilon-Casein,gamma-Caseins,kappa-Casein,kappa-Caseins,AD beta Casein,Caseinate, Sodium,K Casein,alpha Casein,alpha Caseins,beta Casein,beta Caseins,beta-Casein Acetylated, Dephosphorylated,beta-Casein, AD,epsilon Casein,gamma Casein,gamma Caseins,kappa Casein,kappa Caseins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

M F Charette, and G W Henderson, and L L Doane, and A Markovitz
April 1981, Proceedings of the National Academy of Sciences of the United States of America,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
April 1985, Journal of bacteriology,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
August 1983, Journal of bacteriology,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
April 1993, Genes & development,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
May 1973, Journal of bacteriology,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
August 1981, Proceedings of the National Academy of Sciences of the United States of America,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
February 1978, Molecular & general genetics : MGG,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
June 1973, Genetics,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
July 1981, Journal of bacteriology,
M F Charette, and G W Henderson, and L L Doane, and A Markovitz
September 1973, Journal of bacteriology,
Copied contents to your clipboard!