beta-Bungarotoxin antagonizes the effect of alpha-latrotoxin from black widow spider venom on the neuromuscular junction. 1984

M C Tzeng, and S S Tian

Sustained contraction of the chick biventer cervicis nerve-muscle preparations evoked by alpha-latrotoxin was antagonized quickly by beta-bungarotoxin. This effect of beta-bungarotoxin was dependent on its phospholipase A2 activity. In contrast, pancreatic phospholipase A2 was ineffective even at a much higher dose. It is concluded that alpha-latrotoxin needs intact presynaptic membrane to exert its effect.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001180 Arthropod Venoms Venoms from animals of the phylum ARTHROPODA. Those most investigated are from SCORPIONS and SPIDERS of the class Arachnidae and from ant, bee, and wasp families of the INSECTA order HYMENOPTERA. The venoms contain protein toxins, enzymes, and other bioactive substances and may be lethal to man. Arachnid Toxin,Arachnid Toxins,Arachnid Venoms,Hymenoptera Venom,Hymenoptera Venoms,Insect Venom,Insect Venoms,Arachnid Venom,Arthropod Venom,Toxin, Arachnid,Toxins, Arachnid,Venom, Arachnid,Venom, Arthropod,Venom, Hymenoptera,Venom, Insect,Venoms, Arachnid,Venoms, Arthropod,Venoms, Hymenoptera,Venoms, Insect
D013111 Spider Venoms Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL. Araneid Venoms,Spider Toxin,Spider Toxins,Tarantula Toxin,Tarantula Toxins,Tarantula Venom,Araneid Venom,Spider Venom,Tarantula Venoms,Toxin, Spider,Toxin, Tarantula,Toxins, Spider,Toxins, Tarantula,Venom, Araneid,Venom, Spider,Venom, Tarantula,Venoms, Araneid,Venoms, Spider,Venoms, Tarantula

Related Publications

M C Tzeng, and S S Tian
July 1981, The Journal of physiology,
M C Tzeng, and S S Tian
January 1979, Advances in cytopharmacology,
M C Tzeng, and S S Tian
December 1972, The Journal of general physiology,
M C Tzeng, and S S Tian
April 1978, Journal of neurocytology,
M C Tzeng, and S S Tian
January 1986, Biochemical and biophysical research communications,
M C Tzeng, and S S Tian
February 1979, The Journal of general physiology,
M C Tzeng, and S S Tian
January 1973, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
Copied contents to your clipboard!